This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace sum of two closed orthogonal spaces is closed. (Contributed by NM, 19-Oct-1999) (Proof shortened by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chscl.1 | |- ( ph -> A e. CH ) |
|
| chscl.2 | |- ( ph -> B e. CH ) |
||
| chscl.3 | |- ( ph -> B C_ ( _|_ ` A ) ) |
||
| Assertion | chscl | |- ( ph -> ( A +H B ) e. CH ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chscl.1 | |- ( ph -> A e. CH ) |
|
| 2 | chscl.2 | |- ( ph -> B e. CH ) |
|
| 3 | chscl.3 | |- ( ph -> B C_ ( _|_ ` A ) ) |
|
| 4 | chsh | |- ( A e. CH -> A e. SH ) |
|
| 5 | 1 4 | syl | |- ( ph -> A e. SH ) |
| 6 | chsh | |- ( B e. CH -> B e. SH ) |
|
| 7 | 2 6 | syl | |- ( ph -> B e. SH ) |
| 8 | shscl | |- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) e. SH ) |
|
| 9 | 5 7 8 | syl2anc | |- ( ph -> ( A +H B ) e. SH ) |
| 10 | 1 | adantr | |- ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> A e. CH ) |
| 11 | 2 | adantr | |- ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> B e. CH ) |
| 12 | 3 | adantr | |- ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> B C_ ( _|_ ` A ) ) |
| 13 | simprl | |- ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> f : NN --> ( A +H B ) ) |
|
| 14 | simprr | |- ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> f ~~>v z ) |
|
| 15 | eqid | |- ( x e. NN |-> ( ( projh ` A ) ` ( f ` x ) ) ) = ( x e. NN |-> ( ( projh ` A ) ` ( f ` x ) ) ) |
|
| 16 | eqid | |- ( x e. NN |-> ( ( projh ` B ) ` ( f ` x ) ) ) = ( x e. NN |-> ( ( projh ` B ) ` ( f ` x ) ) ) |
|
| 17 | 10 11 12 13 14 15 16 | chscllem4 | |- ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> z e. ( A +H B ) ) |
| 18 | 17 | ex | |- ( ph -> ( ( f : NN --> ( A +H B ) /\ f ~~>v z ) -> z e. ( A +H B ) ) ) |
| 19 | 18 | alrimivv | |- ( ph -> A. f A. z ( ( f : NN --> ( A +H B ) /\ f ~~>v z ) -> z e. ( A +H B ) ) ) |
| 20 | isch2 | |- ( ( A +H B ) e. CH <-> ( ( A +H B ) e. SH /\ A. f A. z ( ( f : NN --> ( A +H B ) /\ f ~~>v z ) -> z e. ( A +H B ) ) ) ) |
|
| 21 | 9 19 20 | sylanbrc | |- ( ph -> ( A +H B ) e. CH ) |