This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member of the set of Cauchy sequences on a Hilbert space. Definition for Cauchy sequence in Beran p. 96. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hcau | |- ( F e. Cauchy <-> ( F : NN --> ~H /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | |- ( f = F -> ( f ` y ) = ( F ` y ) ) |
|
| 2 | fveq1 | |- ( f = F -> ( f ` z ) = ( F ` z ) ) |
|
| 3 | 1 2 | oveq12d | |- ( f = F -> ( ( f ` y ) -h ( f ` z ) ) = ( ( F ` y ) -h ( F ` z ) ) ) |
| 4 | 3 | fveq2d | |- ( f = F -> ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) = ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) ) |
| 5 | 4 | breq1d | |- ( f = F -> ( ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x <-> ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < x ) ) |
| 6 | 5 | rexralbidv | |- ( f = F -> ( E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x <-> E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < x ) ) |
| 7 | 6 | ralbidv | |- ( f = F -> ( A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < x ) ) |
| 8 | df-hcau | |- Cauchy = { f e. ( ~H ^m NN ) | A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x } |
|
| 9 | 7 8 | elrab2 | |- ( F e. Cauchy <-> ( F e. ( ~H ^m NN ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < x ) ) |
| 10 | ax-hilex | |- ~H e. _V |
|
| 11 | nnex | |- NN e. _V |
|
| 12 | 10 11 | elmap | |- ( F e. ( ~H ^m NN ) <-> F : NN --> ~H ) |
| 13 | 12 | anbi1i | |- ( ( F e. ( ~H ^m NN ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < x ) <-> ( F : NN --> ~H /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < x ) ) |
| 14 | 9 13 | bitri | |- ( F e. Cauchy <-> ( F : NN --> ~H /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < x ) ) |