This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cauchy sequence on a Hilbert space converges. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hcaucvg | |- ( ( F e. Cauchy /\ A e. RR+ ) -> E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hcau | |- ( F e. Cauchy <-> ( F : NN --> ~H /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < x ) ) |
|
| 2 | 1 | simprbi | |- ( F e. Cauchy -> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < x ) |
| 3 | breq2 | |- ( x = A -> ( ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < x <-> ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < A ) ) |
|
| 4 | 3 | rexralbidv | |- ( x = A -> ( E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < x <-> E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < A ) ) |
| 5 | 4 | rspccva | |- ( ( A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < x /\ A e. RR+ ) -> E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < A ) |
| 6 | 2 5 | sylan | |- ( ( F e. Cauchy /\ A e. RR+ ) -> E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < A ) |