This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-like behavior of the convergence relation. (Contributed by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hlimf | |- ~~>v : dom ~~>v --> ~H |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
|
| 2 | eqid | |- ( IndMet ` <. <. +h , .h >. , normh >. ) = ( IndMet ` <. <. +h , .h >. , normh >. ) |
|
| 3 | 1 2 | hhxmet | |- ( IndMet ` <. <. +h , .h >. , normh >. ) e. ( *Met ` ~H ) |
| 4 | eqid | |- ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) = ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) |
|
| 5 | 4 | methaus | |- ( ( IndMet ` <. <. +h , .h >. , normh >. ) e. ( *Met ` ~H ) -> ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) e. Haus ) |
| 6 | lmfun | |- ( ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) e. Haus -> Fun ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) ) |
|
| 7 | 3 5 6 | mp2b | |- Fun ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |
| 8 | funres | |- ( Fun ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) -> Fun ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) ) |
|
| 9 | 7 8 | ax-mp | |- Fun ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) |
| 10 | 1 2 4 | hhlm | |- ~~>v = ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) |
| 11 | 10 | funeqi | |- ( Fun ~~>v <-> Fun ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) ) |
| 12 | 9 11 | mpbir | |- Fun ~~>v |
| 13 | funfn | |- ( Fun ~~>v <-> ~~>v Fn dom ~~>v ) |
|
| 14 | 12 13 | mpbi | |- ~~>v Fn dom ~~>v |
| 15 | funfvbrb | |- ( Fun ~~>v -> ( x e. dom ~~>v <-> x ~~>v ( ~~>v ` x ) ) ) |
|
| 16 | 12 15 | ax-mp | |- ( x e. dom ~~>v <-> x ~~>v ( ~~>v ` x ) ) |
| 17 | fvex | |- ( ~~>v ` x ) e. _V |
|
| 18 | 17 | hlimveci | |- ( x ~~>v ( ~~>v ` x ) -> ( ~~>v ` x ) e. ~H ) |
| 19 | 16 18 | sylbi | |- ( x e. dom ~~>v -> ( ~~>v ` x ) e. ~H ) |
| 20 | 19 | rgen | |- A. x e. dom ~~>v ( ~~>v ` x ) e. ~H |
| 21 | ffnfv | |- ( ~~>v : dom ~~>v --> ~H <-> ( ~~>v Fn dom ~~>v /\ A. x e. dom ~~>v ( ~~>v ` x ) e. ~H ) ) |
|
| 22 | 14 20 21 | mpbir2an | |- ~~>v : dom ~~>v --> ~H |