This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between vector subtraction and addition. (Contributed by NM, 30-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubadd | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) = C <-> ( B +h C ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( A -h B ) = ( if ( A e. ~H , A , 0h ) -h B ) ) |
|
| 2 | 1 | eqeq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( A -h B ) = C <-> ( if ( A e. ~H , A , 0h ) -h B ) = C ) ) |
| 3 | eqeq2 | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( B +h C ) = A <-> ( B +h C ) = if ( A e. ~H , A , 0h ) ) ) |
|
| 4 | 2 3 | bibi12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( A -h B ) = C <-> ( B +h C ) = A ) <-> ( ( if ( A e. ~H , A , 0h ) -h B ) = C <-> ( B +h C ) = if ( A e. ~H , A , 0h ) ) ) ) |
| 5 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
|
| 6 | 5 | eqeq1d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h B ) = C <-> ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = C ) ) |
| 7 | oveq1 | |- ( B = if ( B e. ~H , B , 0h ) -> ( B +h C ) = ( if ( B e. ~H , B , 0h ) +h C ) ) |
|
| 8 | 7 | eqeq1d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( B +h C ) = if ( A e. ~H , A , 0h ) <-> ( if ( B e. ~H , B , 0h ) +h C ) = if ( A e. ~H , A , 0h ) ) ) |
| 9 | 6 8 | bibi12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( if ( A e. ~H , A , 0h ) -h B ) = C <-> ( B +h C ) = if ( A e. ~H , A , 0h ) ) <-> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = C <-> ( if ( B e. ~H , B , 0h ) +h C ) = if ( A e. ~H , A , 0h ) ) ) ) |
| 10 | eqeq2 | |- ( C = if ( C e. ~H , C , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = C <-> ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = if ( C e. ~H , C , 0h ) ) ) |
|
| 11 | oveq2 | |- ( C = if ( C e. ~H , C , 0h ) -> ( if ( B e. ~H , B , 0h ) +h C ) = ( if ( B e. ~H , B , 0h ) +h if ( C e. ~H , C , 0h ) ) ) |
|
| 12 | 11 | eqeq1d | |- ( C = if ( C e. ~H , C , 0h ) -> ( ( if ( B e. ~H , B , 0h ) +h C ) = if ( A e. ~H , A , 0h ) <-> ( if ( B e. ~H , B , 0h ) +h if ( C e. ~H , C , 0h ) ) = if ( A e. ~H , A , 0h ) ) ) |
| 13 | 10 12 | bibi12d | |- ( C = if ( C e. ~H , C , 0h ) -> ( ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = C <-> ( if ( B e. ~H , B , 0h ) +h C ) = if ( A e. ~H , A , 0h ) ) <-> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = if ( C e. ~H , C , 0h ) <-> ( if ( B e. ~H , B , 0h ) +h if ( C e. ~H , C , 0h ) ) = if ( A e. ~H , A , 0h ) ) ) ) |
| 14 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 15 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 16 | ifhvhv0 | |- if ( C e. ~H , C , 0h ) e. ~H |
|
| 17 | 14 15 16 | hvsubaddi | |- ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = if ( C e. ~H , C , 0h ) <-> ( if ( B e. ~H , B , 0h ) +h if ( C e. ~H , C , 0h ) ) = if ( A e. ~H , A , 0h ) ) |
| 18 | 4 9 13 17 | dedth3h | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) = C <-> ( B +h C ) = A ) ) |