This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a sequence in Hilbert space subset converges to a limit, it is a Cauchy sequence. (Contributed by NM, 17-Aug-1999) (Proof shortened by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hlimcaui | |- ( F ~~>v A -> F e. Cauchy ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
|
| 2 | eqid | |- ( IndMet ` <. <. +h , .h >. , normh >. ) = ( IndMet ` <. <. +h , .h >. , normh >. ) |
|
| 3 | eqid | |- ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) = ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) |
|
| 4 | 1 2 3 | hhlm | |- ~~>v = ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) |
| 5 | resss | |- ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) C_ ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |
|
| 6 | 4 5 | eqsstri | |- ~~>v C_ ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |
| 7 | dmss | |- ( ~~>v C_ ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) -> dom ~~>v C_ dom ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) ) |
|
| 8 | 6 7 | ax-mp | |- dom ~~>v C_ dom ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |
| 9 | 1 2 | hhxmet | |- ( IndMet ` <. <. +h , .h >. , normh >. ) e. ( *Met ` ~H ) |
| 10 | 3 | lmcau | |- ( ( IndMet ` <. <. +h , .h >. , normh >. ) e. ( *Met ` ~H ) -> dom ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) C_ ( Cau ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |
| 11 | 9 10 | ax-mp | |- dom ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) C_ ( Cau ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) |
| 12 | 8 11 | sstri | |- dom ~~>v C_ ( Cau ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) |
| 13 | 4 | dmeqi | |- dom ~~>v = dom ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) |
| 14 | dmres | |- dom ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) = ( ( ~H ^m NN ) i^i dom ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) ) |
|
| 15 | 13 14 | eqtri | |- dom ~~>v = ( ( ~H ^m NN ) i^i dom ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) ) |
| 16 | inss1 | |- ( ( ~H ^m NN ) i^i dom ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) ) C_ ( ~H ^m NN ) |
|
| 17 | 15 16 | eqsstri | |- dom ~~>v C_ ( ~H ^m NN ) |
| 18 | 12 17 | ssini | |- dom ~~>v C_ ( ( Cau ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) i^i ( ~H ^m NN ) ) |
| 19 | 1 2 | hhcau | |- Cauchy = ( ( Cau ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) i^i ( ~H ^m NN ) ) |
| 20 | 18 19 | sseqtrri | |- dom ~~>v C_ Cauchy |
| 21 | relres | |- Rel ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) |
|
| 22 | 4 | releqi | |- ( Rel ~~>v <-> Rel ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) ) |
| 23 | 21 22 | mpbir | |- Rel ~~>v |
| 24 | 23 | releldmi | |- ( F ~~>v A -> F e. dom ~~>v ) |
| 25 | 20 24 | sselid | |- ( F ~~>v A -> F e. Cauchy ) |