This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of Beran p. 98. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | normpyth | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = 0 -> ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( A .ih B ) = ( if ( A e. ~H , A , 0h ) .ih B ) ) |
|
| 2 | 1 | eqeq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( A .ih B ) = 0 <-> ( if ( A e. ~H , A , 0h ) .ih B ) = 0 ) ) |
| 3 | fvoveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A +h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ) |
|
| 4 | 3 | oveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) ) |
| 5 | fveq2 | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` A ) = ( normh ` if ( A e. ~H , A , 0h ) ) ) |
|
| 6 | 5 | oveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` A ) ^ 2 ) = ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) ) |
| 7 | 6 | oveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) = ( ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) |
| 8 | 4 7 | eqeq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) = ( ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) ) |
| 9 | 2 8 | imbi12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( A .ih B ) = 0 -> ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) <-> ( ( if ( A e. ~H , A , 0h ) .ih B ) = 0 -> ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) = ( ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) ) ) |
| 10 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) .ih B ) = ( if ( A e. ~H , A , 0h ) .ih if ( B e. ~H , B , 0h ) ) ) |
|
| 11 | 10 | eqeq1d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( if ( A e. ~H , A , 0h ) .ih B ) = 0 <-> ( if ( A e. ~H , A , 0h ) .ih if ( B e. ~H , B , 0h ) ) = 0 ) ) |
| 12 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) +h B ) = ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) |
|
| 13 | 12 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ) |
| 14 | 13 | oveq1d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) ) |
| 15 | fveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` B ) = ( normh ` if ( B e. ~H , B , 0h ) ) ) |
|
| 16 | 15 | oveq1d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` B ) ^ 2 ) = ( ( normh ` if ( B e. ~H , B , 0h ) ) ^ 2 ) ) |
| 17 | 16 | oveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) = ( ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) + ( ( normh ` if ( B e. ~H , B , 0h ) ) ^ 2 ) ) ) |
| 18 | 14 17 | eqeq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) = ( ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) = ( ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) + ( ( normh ` if ( B e. ~H , B , 0h ) ) ^ 2 ) ) ) ) |
| 19 | 11 18 | imbi12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( if ( A e. ~H , A , 0h ) .ih B ) = 0 -> ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) = ( ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) <-> ( ( if ( A e. ~H , A , 0h ) .ih if ( B e. ~H , B , 0h ) ) = 0 -> ( ( normh ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) = ( ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) + ( ( normh ` if ( B e. ~H , B , 0h ) ) ^ 2 ) ) ) ) ) |
| 20 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 21 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 22 | 20 21 | normpythi | |- ( ( if ( A e. ~H , A , 0h ) .ih if ( B e. ~H , B , 0h ) ) = 0 -> ( ( normh ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) = ( ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) + ( ( normh ` if ( B e. ~H , B , 0h ) ) ^ 2 ) ) ) |
| 23 | 9 19 22 | dedth2h | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = 0 -> ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) ) |