This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of vector subtraction in a subspace of a Hilbert space. (Contributed by NM, 18-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shsubcl | |- ( ( H e. SH /\ A e. H /\ B e. H ) -> ( A -h B ) e. H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shss | |- ( H e. SH -> H C_ ~H ) |
|
| 2 | 1 | sseld | |- ( H e. SH -> ( A e. H -> A e. ~H ) ) |
| 3 | 1 | sseld | |- ( H e. SH -> ( B e. H -> B e. ~H ) ) |
| 4 | 2 3 | anim12d | |- ( H e. SH -> ( ( A e. H /\ B e. H ) -> ( A e. ~H /\ B e. ~H ) ) ) |
| 5 | 4 | 3impib | |- ( ( H e. SH /\ A e. H /\ B e. H ) -> ( A e. ~H /\ B e. ~H ) ) |
| 6 | hvsubval | |- ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) = ( A +h ( -u 1 .h B ) ) ) |
|
| 7 | 5 6 | syl | |- ( ( H e. SH /\ A e. H /\ B e. H ) -> ( A -h B ) = ( A +h ( -u 1 .h B ) ) ) |
| 8 | neg1cn | |- -u 1 e. CC |
|
| 9 | shmulcl | |- ( ( H e. SH /\ -u 1 e. CC /\ B e. H ) -> ( -u 1 .h B ) e. H ) |
|
| 10 | 8 9 | mp3an2 | |- ( ( H e. SH /\ B e. H ) -> ( -u 1 .h B ) e. H ) |
| 11 | 10 | 3adant2 | |- ( ( H e. SH /\ A e. H /\ B e. H ) -> ( -u 1 .h B ) e. H ) |
| 12 | shaddcl | |- ( ( H e. SH /\ A e. H /\ ( -u 1 .h B ) e. H ) -> ( A +h ( -u 1 .h B ) ) e. H ) |
|
| 13 | 11 12 | syld3an3 | |- ( ( H e. SH /\ A e. H /\ B e. H ) -> ( A +h ( -u 1 .h B ) ) e. H ) |
| 14 | 7 13 | eqeltrd | |- ( ( H e. SH /\ A e. H /\ B e. H ) -> ( A -h B ) e. H ) |