This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for chscl . (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chscl.1 | |- ( ph -> A e. CH ) |
|
| chscl.2 | |- ( ph -> B e. CH ) |
||
| chscl.3 | |- ( ph -> B C_ ( _|_ ` A ) ) |
||
| chscl.4 | |- ( ph -> H : NN --> ( A +H B ) ) |
||
| chscl.5 | |- ( ph -> H ~~>v u ) |
||
| chscl.6 | |- F = ( n e. NN |-> ( ( projh ` A ) ` ( H ` n ) ) ) |
||
| chscllem3.7 | |- ( ph -> N e. NN ) |
||
| chscllem3.8 | |- ( ph -> C e. A ) |
||
| chscllem3.9 | |- ( ph -> D e. B ) |
||
| chscllem3.10 | |- ( ph -> ( H ` N ) = ( C +h D ) ) |
||
| Assertion | chscllem3 | |- ( ph -> C = ( F ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chscl.1 | |- ( ph -> A e. CH ) |
|
| 2 | chscl.2 | |- ( ph -> B e. CH ) |
|
| 3 | chscl.3 | |- ( ph -> B C_ ( _|_ ` A ) ) |
|
| 4 | chscl.4 | |- ( ph -> H : NN --> ( A +H B ) ) |
|
| 5 | chscl.5 | |- ( ph -> H ~~>v u ) |
|
| 6 | chscl.6 | |- F = ( n e. NN |-> ( ( projh ` A ) ` ( H ` n ) ) ) |
|
| 7 | chscllem3.7 | |- ( ph -> N e. NN ) |
|
| 8 | chscllem3.8 | |- ( ph -> C e. A ) |
|
| 9 | chscllem3.9 | |- ( ph -> D e. B ) |
|
| 10 | chscllem3.10 | |- ( ph -> ( H ` N ) = ( C +h D ) ) |
|
| 11 | 2fveq3 | |- ( n = N -> ( ( projh ` A ) ` ( H ` n ) ) = ( ( projh ` A ) ` ( H ` N ) ) ) |
|
| 12 | fvex | |- ( ( projh ` A ) ` ( H ` N ) ) e. _V |
|
| 13 | 11 6 12 | fvmpt | |- ( N e. NN -> ( F ` N ) = ( ( projh ` A ) ` ( H ` N ) ) ) |
| 14 | 7 13 | syl | |- ( ph -> ( F ` N ) = ( ( projh ` A ) ` ( H ` N ) ) ) |
| 15 | 14 | eqcomd | |- ( ph -> ( ( projh ` A ) ` ( H ` N ) ) = ( F ` N ) ) |
| 16 | chsh | |- ( B e. CH -> B e. SH ) |
|
| 17 | 2 16 | syl | |- ( ph -> B e. SH ) |
| 18 | chsh | |- ( A e. CH -> A e. SH ) |
|
| 19 | 1 18 | syl | |- ( ph -> A e. SH ) |
| 20 | shocsh | |- ( A e. SH -> ( _|_ ` A ) e. SH ) |
|
| 21 | 19 20 | syl | |- ( ph -> ( _|_ ` A ) e. SH ) |
| 22 | shless | |- ( ( ( B e. SH /\ ( _|_ ` A ) e. SH /\ A e. SH ) /\ B C_ ( _|_ ` A ) ) -> ( B +H A ) C_ ( ( _|_ ` A ) +H A ) ) |
|
| 23 | 17 21 19 3 22 | syl31anc | |- ( ph -> ( B +H A ) C_ ( ( _|_ ` A ) +H A ) ) |
| 24 | shscom | |- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) = ( B +H A ) ) |
|
| 25 | 19 17 24 | syl2anc | |- ( ph -> ( A +H B ) = ( B +H A ) ) |
| 26 | shscom | |- ( ( A e. SH /\ ( _|_ ` A ) e. SH ) -> ( A +H ( _|_ ` A ) ) = ( ( _|_ ` A ) +H A ) ) |
|
| 27 | 19 21 26 | syl2anc | |- ( ph -> ( A +H ( _|_ ` A ) ) = ( ( _|_ ` A ) +H A ) ) |
| 28 | 23 25 27 | 3sstr4d | |- ( ph -> ( A +H B ) C_ ( A +H ( _|_ ` A ) ) ) |
| 29 | 4 7 | ffvelcdmd | |- ( ph -> ( H ` N ) e. ( A +H B ) ) |
| 30 | 28 29 | sseldd | |- ( ph -> ( H ` N ) e. ( A +H ( _|_ ` A ) ) ) |
| 31 | pjpreeq | |- ( ( A e. CH /\ ( H ` N ) e. ( A +H ( _|_ ` A ) ) ) -> ( ( ( projh ` A ) ` ( H ` N ) ) = ( F ` N ) <-> ( ( F ` N ) e. A /\ E. z e. ( _|_ ` A ) ( H ` N ) = ( ( F ` N ) +h z ) ) ) ) |
|
| 32 | 1 30 31 | syl2anc | |- ( ph -> ( ( ( projh ` A ) ` ( H ` N ) ) = ( F ` N ) <-> ( ( F ` N ) e. A /\ E. z e. ( _|_ ` A ) ( H ` N ) = ( ( F ` N ) +h z ) ) ) ) |
| 33 | 15 32 | mpbid | |- ( ph -> ( ( F ` N ) e. A /\ E. z e. ( _|_ ` A ) ( H ` N ) = ( ( F ` N ) +h z ) ) ) |
| 34 | 33 | simprd | |- ( ph -> E. z e. ( _|_ ` A ) ( H ` N ) = ( ( F ` N ) +h z ) ) |
| 35 | 19 | adantr | |- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> A e. SH ) |
| 36 | 21 | adantr | |- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> ( _|_ ` A ) e. SH ) |
| 37 | ocin | |- ( A e. SH -> ( A i^i ( _|_ ` A ) ) = 0H ) |
|
| 38 | 19 37 | syl | |- ( ph -> ( A i^i ( _|_ ` A ) ) = 0H ) |
| 39 | 38 | adantr | |- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> ( A i^i ( _|_ ` A ) ) = 0H ) |
| 40 | 8 | adantr | |- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> C e. A ) |
| 41 | 3 | adantr | |- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> B C_ ( _|_ ` A ) ) |
| 42 | 9 | adantr | |- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> D e. B ) |
| 43 | 41 42 | sseldd | |- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> D e. ( _|_ ` A ) ) |
| 44 | 1 2 3 4 5 6 | chscllem1 | |- ( ph -> F : NN --> A ) |
| 45 | 44 7 | ffvelcdmd | |- ( ph -> ( F ` N ) e. A ) |
| 46 | 45 | adantr | |- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> ( F ` N ) e. A ) |
| 47 | simprl | |- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> z e. ( _|_ ` A ) ) |
|
| 48 | 10 | adantr | |- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> ( H ` N ) = ( C +h D ) ) |
| 49 | simprr | |- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> ( H ` N ) = ( ( F ` N ) +h z ) ) |
|
| 50 | 48 49 | eqtr3d | |- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> ( C +h D ) = ( ( F ` N ) +h z ) ) |
| 51 | 35 36 39 40 43 46 47 50 | shuni | |- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> ( C = ( F ` N ) /\ D = z ) ) |
| 52 | 51 | simpld | |- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> C = ( F ` N ) ) |
| 53 | 34 52 | rexlimddv | |- ( ph -> C = ( F ` N ) ) |