This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 2-Apr-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubsub4 | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A -h B ) -h ( C -h D ) ) = ( ( A -h C ) -h ( B -h D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( A -h B ) = ( if ( A e. ~H , A , 0h ) -h B ) ) |
|
| 2 | 1 | oveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( A -h B ) -h ( C -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h B ) -h ( C -h D ) ) ) |
| 3 | oveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( A -h C ) = ( if ( A e. ~H , A , 0h ) -h C ) ) |
|
| 4 | 3 | oveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( A -h C ) -h ( B -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h C ) -h ( B -h D ) ) ) |
| 5 | 2 4 | eqeq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( A -h B ) -h ( C -h D ) ) = ( ( A -h C ) -h ( B -h D ) ) <-> ( ( if ( A e. ~H , A , 0h ) -h B ) -h ( C -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h C ) -h ( B -h D ) ) ) ) |
| 6 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
|
| 7 | 6 | oveq1d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h B ) -h ( C -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( C -h D ) ) ) |
| 8 | oveq1 | |- ( B = if ( B e. ~H , B , 0h ) -> ( B -h D ) = ( if ( B e. ~H , B , 0h ) -h D ) ) |
|
| 9 | 8 | oveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h C ) -h ( B -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h C ) -h ( if ( B e. ~H , B , 0h ) -h D ) ) ) |
| 10 | 7 9 | eqeq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( if ( A e. ~H , A , 0h ) -h B ) -h ( C -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h C ) -h ( B -h D ) ) <-> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( C -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h C ) -h ( if ( B e. ~H , B , 0h ) -h D ) ) ) ) |
| 11 | oveq1 | |- ( C = if ( C e. ~H , C , 0h ) -> ( C -h D ) = ( if ( C e. ~H , C , 0h ) -h D ) ) |
|
| 12 | 11 | oveq2d | |- ( C = if ( C e. ~H , C , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( C -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( if ( C e. ~H , C , 0h ) -h D ) ) ) |
| 13 | oveq2 | |- ( C = if ( C e. ~H , C , 0h ) -> ( if ( A e. ~H , A , 0h ) -h C ) = ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) |
|
| 14 | 13 | oveq1d | |- ( C = if ( C e. ~H , C , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h C ) -h ( if ( B e. ~H , B , 0h ) -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) -h ( if ( B e. ~H , B , 0h ) -h D ) ) ) |
| 15 | 12 14 | eqeq12d | |- ( C = if ( C e. ~H , C , 0h ) -> ( ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( C -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h C ) -h ( if ( B e. ~H , B , 0h ) -h D ) ) <-> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( if ( C e. ~H , C , 0h ) -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) -h ( if ( B e. ~H , B , 0h ) -h D ) ) ) ) |
| 16 | oveq2 | |- ( D = if ( D e. ~H , D , 0h ) -> ( if ( C e. ~H , C , 0h ) -h D ) = ( if ( C e. ~H , C , 0h ) -h if ( D e. ~H , D , 0h ) ) ) |
|
| 17 | 16 | oveq2d | |- ( D = if ( D e. ~H , D , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( if ( C e. ~H , C , 0h ) -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( if ( C e. ~H , C , 0h ) -h if ( D e. ~H , D , 0h ) ) ) ) |
| 18 | oveq2 | |- ( D = if ( D e. ~H , D , 0h ) -> ( if ( B e. ~H , B , 0h ) -h D ) = ( if ( B e. ~H , B , 0h ) -h if ( D e. ~H , D , 0h ) ) ) |
|
| 19 | 18 | oveq2d | |- ( D = if ( D e. ~H , D , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) -h ( if ( B e. ~H , B , 0h ) -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) -h ( if ( B e. ~H , B , 0h ) -h if ( D e. ~H , D , 0h ) ) ) ) |
| 20 | 17 19 | eqeq12d | |- ( D = if ( D e. ~H , D , 0h ) -> ( ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( if ( C e. ~H , C , 0h ) -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) -h ( if ( B e. ~H , B , 0h ) -h D ) ) <-> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( if ( C e. ~H , C , 0h ) -h if ( D e. ~H , D , 0h ) ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) -h ( if ( B e. ~H , B , 0h ) -h if ( D e. ~H , D , 0h ) ) ) ) ) |
| 21 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 22 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 23 | ifhvhv0 | |- if ( C e. ~H , C , 0h ) e. ~H |
|
| 24 | ifhvhv0 | |- if ( D e. ~H , D , 0h ) e. ~H |
|
| 25 | 21 22 23 24 | hvsubsub4i | |- ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( if ( C e. ~H , C , 0h ) -h if ( D e. ~H , D , 0h ) ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) -h ( if ( B e. ~H , B , 0h ) -h if ( D e. ~H , D , 0h ) ) ) |
| 26 | 5 10 15 20 25 | dedth4h | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A -h B ) -h ( C -h D ) ) = ( ( A -h C ) -h ( B -h D ) ) ) |