This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for chscl . (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chscl.1 | |- ( ph -> A e. CH ) |
|
| chscl.2 | |- ( ph -> B e. CH ) |
||
| chscl.3 | |- ( ph -> B C_ ( _|_ ` A ) ) |
||
| chscl.4 | |- ( ph -> H : NN --> ( A +H B ) ) |
||
| chscl.5 | |- ( ph -> H ~~>v u ) |
||
| chscl.6 | |- F = ( n e. NN |-> ( ( projh ` A ) ` ( H ` n ) ) ) |
||
| Assertion | chscllem1 | |- ( ph -> F : NN --> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chscl.1 | |- ( ph -> A e. CH ) |
|
| 2 | chscl.2 | |- ( ph -> B e. CH ) |
|
| 3 | chscl.3 | |- ( ph -> B C_ ( _|_ ` A ) ) |
|
| 4 | chscl.4 | |- ( ph -> H : NN --> ( A +H B ) ) |
|
| 5 | chscl.5 | |- ( ph -> H ~~>v u ) |
|
| 6 | chscl.6 | |- F = ( n e. NN |-> ( ( projh ` A ) ` ( H ` n ) ) ) |
|
| 7 | eqid | |- ( ( projh ` A ) ` ( H ` n ) ) = ( ( projh ` A ) ` ( H ` n ) ) |
|
| 8 | 1 | adantr | |- ( ( ph /\ n e. NN ) -> A e. CH ) |
| 9 | 4 | ffvelcdmda | |- ( ( ph /\ n e. NN ) -> ( H ` n ) e. ( A +H B ) ) |
| 10 | chsh | |- ( B e. CH -> B e. SH ) |
|
| 11 | 2 10 | syl | |- ( ph -> B e. SH ) |
| 12 | chsh | |- ( A e. CH -> A e. SH ) |
|
| 13 | 1 12 | syl | |- ( ph -> A e. SH ) |
| 14 | shocsh | |- ( A e. SH -> ( _|_ ` A ) e. SH ) |
|
| 15 | 13 14 | syl | |- ( ph -> ( _|_ ` A ) e. SH ) |
| 16 | shless | |- ( ( ( B e. SH /\ ( _|_ ` A ) e. SH /\ A e. SH ) /\ B C_ ( _|_ ` A ) ) -> ( B +H A ) C_ ( ( _|_ ` A ) +H A ) ) |
|
| 17 | 11 15 13 3 16 | syl31anc | |- ( ph -> ( B +H A ) C_ ( ( _|_ ` A ) +H A ) ) |
| 18 | shscom | |- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) = ( B +H A ) ) |
|
| 19 | 13 11 18 | syl2anc | |- ( ph -> ( A +H B ) = ( B +H A ) ) |
| 20 | shscom | |- ( ( A e. SH /\ ( _|_ ` A ) e. SH ) -> ( A +H ( _|_ ` A ) ) = ( ( _|_ ` A ) +H A ) ) |
|
| 21 | 13 15 20 | syl2anc | |- ( ph -> ( A +H ( _|_ ` A ) ) = ( ( _|_ ` A ) +H A ) ) |
| 22 | 17 19 21 | 3sstr4d | |- ( ph -> ( A +H B ) C_ ( A +H ( _|_ ` A ) ) ) |
| 23 | 22 | sselda | |- ( ( ph /\ ( H ` n ) e. ( A +H B ) ) -> ( H ` n ) e. ( A +H ( _|_ ` A ) ) ) |
| 24 | 9 23 | syldan | |- ( ( ph /\ n e. NN ) -> ( H ` n ) e. ( A +H ( _|_ ` A ) ) ) |
| 25 | pjpreeq | |- ( ( A e. CH /\ ( H ` n ) e. ( A +H ( _|_ ` A ) ) ) -> ( ( ( projh ` A ) ` ( H ` n ) ) = ( ( projh ` A ) ` ( H ` n ) ) <-> ( ( ( projh ` A ) ` ( H ` n ) ) e. A /\ E. x e. ( _|_ ` A ) ( H ` n ) = ( ( ( projh ` A ) ` ( H ` n ) ) +h x ) ) ) ) |
|
| 26 | 8 24 25 | syl2anc | |- ( ( ph /\ n e. NN ) -> ( ( ( projh ` A ) ` ( H ` n ) ) = ( ( projh ` A ) ` ( H ` n ) ) <-> ( ( ( projh ` A ) ` ( H ` n ) ) e. A /\ E. x e. ( _|_ ` A ) ( H ` n ) = ( ( ( projh ` A ) ` ( H ` n ) ) +h x ) ) ) ) |
| 27 | 7 26 | mpbii | |- ( ( ph /\ n e. NN ) -> ( ( ( projh ` A ) ` ( H ` n ) ) e. A /\ E. x e. ( _|_ ` A ) ( H ` n ) = ( ( ( projh ` A ) ` ( H ` n ) ) +h x ) ) ) |
| 28 | 27 | simpld | |- ( ( ph /\ n e. NN ) -> ( ( projh ` A ) ` ( H ` n ) ) e. A ) |
| 29 | 28 6 | fmptd | |- ( ph -> F : NN --> A ) |