This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Taylor series for arctan ( A ) . (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | atantayl.1 | |- F = ( n e. NN |-> ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) |
|
| Assertion | atantayl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , F ) ~~> ( arctan ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atantayl.1 | |- F = ( n e. NN |-> ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) |
|
| 2 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 3 | 1zzd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. ZZ ) |
|
| 4 | ax-icn | |- _i e. CC |
|
| 5 | halfcl | |- ( _i e. CC -> ( _i / 2 ) e. CC ) |
|
| 6 | 4 5 | mp1i | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( _i / 2 ) e. CC ) |
| 7 | simpl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. CC ) |
|
| 8 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 9 | 4 7 8 | sylancr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( _i x. A ) e. CC ) |
| 10 | 9 | negcld | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> -u ( _i x. A ) e. CC ) |
| 11 | 9 | absnegd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` -u ( _i x. A ) ) = ( abs ` ( _i x. A ) ) ) |
| 12 | absmul | |- ( ( _i e. CC /\ A e. CC ) -> ( abs ` ( _i x. A ) ) = ( ( abs ` _i ) x. ( abs ` A ) ) ) |
|
| 13 | 4 7 12 | sylancr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( _i x. A ) ) = ( ( abs ` _i ) x. ( abs ` A ) ) ) |
| 14 | absi | |- ( abs ` _i ) = 1 |
|
| 15 | 14 | oveq1i | |- ( ( abs ` _i ) x. ( abs ` A ) ) = ( 1 x. ( abs ` A ) ) |
| 16 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 17 | 16 | adantr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. RR ) |
| 18 | 17 | recnd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. CC ) |
| 19 | 18 | mullidd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( 1 x. ( abs ` A ) ) = ( abs ` A ) ) |
| 20 | 15 19 | eqtrid | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` _i ) x. ( abs ` A ) ) = ( abs ` A ) ) |
| 21 | 11 13 20 | 3eqtrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` -u ( _i x. A ) ) = ( abs ` A ) ) |
| 22 | simpr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) |
|
| 23 | 21 22 | eqbrtrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` -u ( _i x. A ) ) < 1 ) |
| 24 | logtayl | |- ( ( -u ( _i x. A ) e. CC /\ ( abs ` -u ( _i x. A ) ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( ( -u ( _i x. A ) ^ n ) / n ) ) ) ~~> -u ( log ` ( 1 - -u ( _i x. A ) ) ) ) |
|
| 25 | 10 23 24 | syl2anc | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( ( -u ( _i x. A ) ^ n ) / n ) ) ) ~~> -u ( log ` ( 1 - -u ( _i x. A ) ) ) ) |
| 26 | ax-1cn | |- 1 e. CC |
|
| 27 | subneg | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) |
|
| 28 | 26 9 27 | sylancr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) |
| 29 | 28 | fveq2d | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( log ` ( 1 - -u ( _i x. A ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) |
| 30 | 29 | negeqd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> -u ( log ` ( 1 - -u ( _i x. A ) ) ) = -u ( log ` ( 1 + ( _i x. A ) ) ) ) |
| 31 | 25 30 | breqtrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( ( -u ( _i x. A ) ^ n ) / n ) ) ) ~~> -u ( log ` ( 1 + ( _i x. A ) ) ) ) |
| 32 | seqex | |- seq 1 ( + , ( n e. NN |-> ( ( ( -u ( _i x. A ) ^ n ) / n ) - ( ( ( _i x. A ) ^ n ) / n ) ) ) ) e. _V |
|
| 33 | 32 | a1i | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( ( ( -u ( _i x. A ) ^ n ) / n ) - ( ( ( _i x. A ) ^ n ) / n ) ) ) ) e. _V ) |
| 34 | 11 23 | eqbrtrrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( _i x. A ) ) < 1 ) |
| 35 | logtayl | |- ( ( ( _i x. A ) e. CC /\ ( abs ` ( _i x. A ) ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( ( ( _i x. A ) ^ n ) / n ) ) ) ~~> -u ( log ` ( 1 - ( _i x. A ) ) ) ) |
|
| 36 | 9 34 35 | syl2anc | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( ( ( _i x. A ) ^ n ) / n ) ) ) ~~> -u ( log ` ( 1 - ( _i x. A ) ) ) ) |
| 37 | oveq2 | |- ( n = m -> ( -u ( _i x. A ) ^ n ) = ( -u ( _i x. A ) ^ m ) ) |
|
| 38 | id | |- ( n = m -> n = m ) |
|
| 39 | 37 38 | oveq12d | |- ( n = m -> ( ( -u ( _i x. A ) ^ n ) / n ) = ( ( -u ( _i x. A ) ^ m ) / m ) ) |
| 40 | eqid | |- ( n e. NN |-> ( ( -u ( _i x. A ) ^ n ) / n ) ) = ( n e. NN |-> ( ( -u ( _i x. A ) ^ n ) / n ) ) |
|
| 41 | ovex | |- ( ( -u ( _i x. A ) ^ m ) / m ) e. _V |
|
| 42 | 39 40 41 | fvmpt | |- ( m e. NN -> ( ( n e. NN |-> ( ( -u ( _i x. A ) ^ n ) / n ) ) ` m ) = ( ( -u ( _i x. A ) ^ m ) / m ) ) |
| 43 | 42 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( -u ( _i x. A ) ^ n ) / n ) ) ` m ) = ( ( -u ( _i x. A ) ^ m ) / m ) ) |
| 44 | nnnn0 | |- ( m e. NN -> m e. NN0 ) |
|
| 45 | expcl | |- ( ( -u ( _i x. A ) e. CC /\ m e. NN0 ) -> ( -u ( _i x. A ) ^ m ) e. CC ) |
|
| 46 | 10 44 45 | syl2an | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( -u ( _i x. A ) ^ m ) e. CC ) |
| 47 | nncn | |- ( m e. NN -> m e. CC ) |
|
| 48 | 47 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> m e. CC ) |
| 49 | nnne0 | |- ( m e. NN -> m =/= 0 ) |
|
| 50 | 49 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> m =/= 0 ) |
| 51 | 46 48 50 | divcld | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( -u ( _i x. A ) ^ m ) / m ) e. CC ) |
| 52 | 43 51 | eqeltrd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( -u ( _i x. A ) ^ n ) / n ) ) ` m ) e. CC ) |
| 53 | 2 3 52 | serf | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( ( -u ( _i x. A ) ^ n ) / n ) ) ) : NN --> CC ) |
| 54 | 53 | ffvelcdmda | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( seq 1 ( + , ( n e. NN |-> ( ( -u ( _i x. A ) ^ n ) / n ) ) ) ` k ) e. CC ) |
| 55 | oveq2 | |- ( n = m -> ( ( _i x. A ) ^ n ) = ( ( _i x. A ) ^ m ) ) |
|
| 56 | 55 38 | oveq12d | |- ( n = m -> ( ( ( _i x. A ) ^ n ) / n ) = ( ( ( _i x. A ) ^ m ) / m ) ) |
| 57 | eqid | |- ( n e. NN |-> ( ( ( _i x. A ) ^ n ) / n ) ) = ( n e. NN |-> ( ( ( _i x. A ) ^ n ) / n ) ) |
|
| 58 | ovex | |- ( ( ( _i x. A ) ^ m ) / m ) e. _V |
|
| 59 | 56 57 58 | fvmpt | |- ( m e. NN -> ( ( n e. NN |-> ( ( ( _i x. A ) ^ n ) / n ) ) ` m ) = ( ( ( _i x. A ) ^ m ) / m ) ) |
| 60 | 59 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( ( _i x. A ) ^ n ) / n ) ) ` m ) = ( ( ( _i x. A ) ^ m ) / m ) ) |
| 61 | expcl | |- ( ( ( _i x. A ) e. CC /\ m e. NN0 ) -> ( ( _i x. A ) ^ m ) e. CC ) |
|
| 62 | 9 44 61 | syl2an | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( _i x. A ) ^ m ) e. CC ) |
| 63 | 62 48 50 | divcld | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( ( _i x. A ) ^ m ) / m ) e. CC ) |
| 64 | 60 63 | eqeltrd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( ( _i x. A ) ^ n ) / n ) ) ` m ) e. CC ) |
| 65 | 2 3 64 | serf | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( ( ( _i x. A ) ^ n ) / n ) ) ) : NN --> CC ) |
| 66 | 65 | ffvelcdmda | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( seq 1 ( + , ( n e. NN |-> ( ( ( _i x. A ) ^ n ) / n ) ) ) ` k ) e. CC ) |
| 67 | simpr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> k e. NN ) |
|
| 68 | 67 2 | eleqtrdi | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
| 69 | simpl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( A e. CC /\ ( abs ` A ) < 1 ) ) |
|
| 70 | elfznn | |- ( m e. ( 1 ... k ) -> m e. NN ) |
|
| 71 | 69 70 52 | syl2an | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> ( ( n e. NN |-> ( ( -u ( _i x. A ) ^ n ) / n ) ) ` m ) e. CC ) |
| 72 | 69 70 64 | syl2an | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> ( ( n e. NN |-> ( ( ( _i x. A ) ^ n ) / n ) ) ` m ) e. CC ) |
| 73 | 39 56 | oveq12d | |- ( n = m -> ( ( ( -u ( _i x. A ) ^ n ) / n ) - ( ( ( _i x. A ) ^ n ) / n ) ) = ( ( ( -u ( _i x. A ) ^ m ) / m ) - ( ( ( _i x. A ) ^ m ) / m ) ) ) |
| 74 | eqid | |- ( n e. NN |-> ( ( ( -u ( _i x. A ) ^ n ) / n ) - ( ( ( _i x. A ) ^ n ) / n ) ) ) = ( n e. NN |-> ( ( ( -u ( _i x. A ) ^ n ) / n ) - ( ( ( _i x. A ) ^ n ) / n ) ) ) |
|
| 75 | ovex | |- ( ( ( -u ( _i x. A ) ^ m ) / m ) - ( ( ( _i x. A ) ^ m ) / m ) ) e. _V |
|
| 76 | 73 74 75 | fvmpt | |- ( m e. NN -> ( ( n e. NN |-> ( ( ( -u ( _i x. A ) ^ n ) / n ) - ( ( ( _i x. A ) ^ n ) / n ) ) ) ` m ) = ( ( ( -u ( _i x. A ) ^ m ) / m ) - ( ( ( _i x. A ) ^ m ) / m ) ) ) |
| 77 | 76 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( ( -u ( _i x. A ) ^ n ) / n ) - ( ( ( _i x. A ) ^ n ) / n ) ) ) ` m ) = ( ( ( -u ( _i x. A ) ^ m ) / m ) - ( ( ( _i x. A ) ^ m ) / m ) ) ) |
| 78 | 43 60 | oveq12d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( ( n e. NN |-> ( ( -u ( _i x. A ) ^ n ) / n ) ) ` m ) - ( ( n e. NN |-> ( ( ( _i x. A ) ^ n ) / n ) ) ` m ) ) = ( ( ( -u ( _i x. A ) ^ m ) / m ) - ( ( ( _i x. A ) ^ m ) / m ) ) ) |
| 79 | 77 78 | eqtr4d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( ( -u ( _i x. A ) ^ n ) / n ) - ( ( ( _i x. A ) ^ n ) / n ) ) ) ` m ) = ( ( ( n e. NN |-> ( ( -u ( _i x. A ) ^ n ) / n ) ) ` m ) - ( ( n e. NN |-> ( ( ( _i x. A ) ^ n ) / n ) ) ` m ) ) ) |
| 80 | 69 70 79 | syl2an | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> ( ( n e. NN |-> ( ( ( -u ( _i x. A ) ^ n ) / n ) - ( ( ( _i x. A ) ^ n ) / n ) ) ) ` m ) = ( ( ( n e. NN |-> ( ( -u ( _i x. A ) ^ n ) / n ) ) ` m ) - ( ( n e. NN |-> ( ( ( _i x. A ) ^ n ) / n ) ) ` m ) ) ) |
| 81 | 68 71 72 80 | sersub | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( seq 1 ( + , ( n e. NN |-> ( ( ( -u ( _i x. A ) ^ n ) / n ) - ( ( ( _i x. A ) ^ n ) / n ) ) ) ) ` k ) = ( ( seq 1 ( + , ( n e. NN |-> ( ( -u ( _i x. A ) ^ n ) / n ) ) ) ` k ) - ( seq 1 ( + , ( n e. NN |-> ( ( ( _i x. A ) ^ n ) / n ) ) ) ` k ) ) ) |
| 82 | 2 3 31 33 36 54 66 81 | climsub | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( ( ( -u ( _i x. A ) ^ n ) / n ) - ( ( ( _i x. A ) ^ n ) / n ) ) ) ) ~~> ( -u ( log ` ( 1 + ( _i x. A ) ) ) - -u ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 83 | addcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
|
| 84 | 26 9 83 | sylancr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( 1 + ( _i x. A ) ) e. CC ) |
| 85 | bndatandm | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. dom arctan ) |
|
| 86 | atandm2 | |- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
|
| 87 | 85 86 | sylib | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
| 88 | 87 | simp3d | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( 1 + ( _i x. A ) ) =/= 0 ) |
| 89 | 84 88 | logcld | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
| 90 | subcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
|
| 91 | 26 9 90 | sylancr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( 1 - ( _i x. A ) ) e. CC ) |
| 92 | 87 | simp2d | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( 1 - ( _i x. A ) ) =/= 0 ) |
| 93 | 91 92 | logcld | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
| 94 | 89 93 | neg2subd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( -u ( log ` ( 1 + ( _i x. A ) ) ) - -u ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 95 | 82 94 | breqtrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( ( ( -u ( _i x. A ) ^ n ) / n ) - ( ( ( _i x. A ) ^ n ) / n ) ) ) ) ~~> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 96 | 51 63 | subcld | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( ( -u ( _i x. A ) ^ m ) / m ) - ( ( ( _i x. A ) ^ m ) / m ) ) e. CC ) |
| 97 | 77 96 | eqeltrd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( ( -u ( _i x. A ) ^ n ) / n ) - ( ( ( _i x. A ) ^ n ) / n ) ) ) ` m ) e. CC ) |
| 98 | 4 | a1i | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> _i e. CC ) |
| 99 | negicn | |- -u _i e. CC |
|
| 100 | 44 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> m e. NN0 ) |
| 101 | expcl | |- ( ( -u _i e. CC /\ m e. NN0 ) -> ( -u _i ^ m ) e. CC ) |
|
| 102 | 99 100 101 | sylancr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( -u _i ^ m ) e. CC ) |
| 103 | expcl | |- ( ( _i e. CC /\ m e. NN0 ) -> ( _i ^ m ) e. CC ) |
|
| 104 | 4 100 103 | sylancr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( _i ^ m ) e. CC ) |
| 105 | 102 104 | subcld | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( -u _i ^ m ) - ( _i ^ m ) ) e. CC ) |
| 106 | 2cnd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> 2 e. CC ) |
|
| 107 | 2ne0 | |- 2 =/= 0 |
|
| 108 | 107 | a1i | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> 2 =/= 0 ) |
| 109 | 98 105 106 108 | div23d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( _i x. ( ( -u _i ^ m ) - ( _i ^ m ) ) ) / 2 ) = ( ( _i / 2 ) x. ( ( -u _i ^ m ) - ( _i ^ m ) ) ) ) |
| 110 | 109 | oveq1d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( ( _i x. ( ( -u _i ^ m ) - ( _i ^ m ) ) ) / 2 ) x. ( ( A ^ m ) / m ) ) = ( ( ( _i / 2 ) x. ( ( -u _i ^ m ) - ( _i ^ m ) ) ) x. ( ( A ^ m ) / m ) ) ) |
| 111 | 6 | adantr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( _i / 2 ) e. CC ) |
| 112 | expcl | |- ( ( A e. CC /\ m e. NN0 ) -> ( A ^ m ) e. CC ) |
|
| 113 | 7 44 112 | syl2an | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( A ^ m ) e. CC ) |
| 114 | 113 48 50 | divcld | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( A ^ m ) / m ) e. CC ) |
| 115 | 111 105 114 | mulassd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( ( _i / 2 ) x. ( ( -u _i ^ m ) - ( _i ^ m ) ) ) x. ( ( A ^ m ) / m ) ) = ( ( _i / 2 ) x. ( ( ( -u _i ^ m ) - ( _i ^ m ) ) x. ( ( A ^ m ) / m ) ) ) ) |
| 116 | 102 104 113 | subdird | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( ( -u _i ^ m ) - ( _i ^ m ) ) x. ( A ^ m ) ) = ( ( ( -u _i ^ m ) x. ( A ^ m ) ) - ( ( _i ^ m ) x. ( A ^ m ) ) ) ) |
| 117 | 7 | adantr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> A e. CC ) |
| 118 | mulneg1 | |- ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. A ) = -u ( _i x. A ) ) |
|
| 119 | 4 117 118 | sylancr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( -u _i x. A ) = -u ( _i x. A ) ) |
| 120 | 119 | oveq1d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( -u _i x. A ) ^ m ) = ( -u ( _i x. A ) ^ m ) ) |
| 121 | 99 | a1i | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> -u _i e. CC ) |
| 122 | 121 117 100 | mulexpd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( -u _i x. A ) ^ m ) = ( ( -u _i ^ m ) x. ( A ^ m ) ) ) |
| 123 | 120 122 | eqtr3d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( -u ( _i x. A ) ^ m ) = ( ( -u _i ^ m ) x. ( A ^ m ) ) ) |
| 124 | 98 117 100 | mulexpd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( _i x. A ) ^ m ) = ( ( _i ^ m ) x. ( A ^ m ) ) ) |
| 125 | 123 124 | oveq12d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( -u ( _i x. A ) ^ m ) - ( ( _i x. A ) ^ m ) ) = ( ( ( -u _i ^ m ) x. ( A ^ m ) ) - ( ( _i ^ m ) x. ( A ^ m ) ) ) ) |
| 126 | 116 125 | eqtr4d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( ( -u _i ^ m ) - ( _i ^ m ) ) x. ( A ^ m ) ) = ( ( -u ( _i x. A ) ^ m ) - ( ( _i x. A ) ^ m ) ) ) |
| 127 | 126 | oveq1d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( ( ( -u _i ^ m ) - ( _i ^ m ) ) x. ( A ^ m ) ) / m ) = ( ( ( -u ( _i x. A ) ^ m ) - ( ( _i x. A ) ^ m ) ) / m ) ) |
| 128 | 105 113 48 50 | divassd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( ( ( -u _i ^ m ) - ( _i ^ m ) ) x. ( A ^ m ) ) / m ) = ( ( ( -u _i ^ m ) - ( _i ^ m ) ) x. ( ( A ^ m ) / m ) ) ) |
| 129 | 46 62 48 50 | divsubdird | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( ( -u ( _i x. A ) ^ m ) - ( ( _i x. A ) ^ m ) ) / m ) = ( ( ( -u ( _i x. A ) ^ m ) / m ) - ( ( ( _i x. A ) ^ m ) / m ) ) ) |
| 130 | 127 128 129 | 3eqtr3d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( ( -u _i ^ m ) - ( _i ^ m ) ) x. ( ( A ^ m ) / m ) ) = ( ( ( -u ( _i x. A ) ^ m ) / m ) - ( ( ( _i x. A ) ^ m ) / m ) ) ) |
| 131 | 130 | oveq2d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( _i / 2 ) x. ( ( ( -u _i ^ m ) - ( _i ^ m ) ) x. ( ( A ^ m ) / m ) ) ) = ( ( _i / 2 ) x. ( ( ( -u ( _i x. A ) ^ m ) / m ) - ( ( ( _i x. A ) ^ m ) / m ) ) ) ) |
| 132 | 110 115 131 | 3eqtrd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( ( _i x. ( ( -u _i ^ m ) - ( _i ^ m ) ) ) / 2 ) x. ( ( A ^ m ) / m ) ) = ( ( _i / 2 ) x. ( ( ( -u ( _i x. A ) ^ m ) / m ) - ( ( ( _i x. A ) ^ m ) / m ) ) ) ) |
| 133 | oveq2 | |- ( n = m -> ( -u _i ^ n ) = ( -u _i ^ m ) ) |
|
| 134 | oveq2 | |- ( n = m -> ( _i ^ n ) = ( _i ^ m ) ) |
|
| 135 | 133 134 | oveq12d | |- ( n = m -> ( ( -u _i ^ n ) - ( _i ^ n ) ) = ( ( -u _i ^ m ) - ( _i ^ m ) ) ) |
| 136 | 135 | oveq2d | |- ( n = m -> ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) = ( _i x. ( ( -u _i ^ m ) - ( _i ^ m ) ) ) ) |
| 137 | 136 | oveq1d | |- ( n = m -> ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) = ( ( _i x. ( ( -u _i ^ m ) - ( _i ^ m ) ) ) / 2 ) ) |
| 138 | oveq2 | |- ( n = m -> ( A ^ n ) = ( A ^ m ) ) |
|
| 139 | 138 38 | oveq12d | |- ( n = m -> ( ( A ^ n ) / n ) = ( ( A ^ m ) / m ) ) |
| 140 | 137 139 | oveq12d | |- ( n = m -> ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) = ( ( ( _i x. ( ( -u _i ^ m ) - ( _i ^ m ) ) ) / 2 ) x. ( ( A ^ m ) / m ) ) ) |
| 141 | ovex | |- ( ( ( _i x. ( ( -u _i ^ m ) - ( _i ^ m ) ) ) / 2 ) x. ( ( A ^ m ) / m ) ) e. _V |
|
| 142 | 140 1 141 | fvmpt | |- ( m e. NN -> ( F ` m ) = ( ( ( _i x. ( ( -u _i ^ m ) - ( _i ^ m ) ) ) / 2 ) x. ( ( A ^ m ) / m ) ) ) |
| 143 | 142 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( F ` m ) = ( ( ( _i x. ( ( -u _i ^ m ) - ( _i ^ m ) ) ) / 2 ) x. ( ( A ^ m ) / m ) ) ) |
| 144 | 77 | oveq2d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( ( _i / 2 ) x. ( ( n e. NN |-> ( ( ( -u ( _i x. A ) ^ n ) / n ) - ( ( ( _i x. A ) ^ n ) / n ) ) ) ` m ) ) = ( ( _i / 2 ) x. ( ( ( -u ( _i x. A ) ^ m ) / m ) - ( ( ( _i x. A ) ^ m ) / m ) ) ) ) |
| 145 | 132 143 144 | 3eqtr4d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ m e. NN ) -> ( F ` m ) = ( ( _i / 2 ) x. ( ( n e. NN |-> ( ( ( -u ( _i x. A ) ^ n ) / n ) - ( ( ( _i x. A ) ^ n ) / n ) ) ) ` m ) ) ) |
| 146 | 2 3 6 95 97 145 | isermulc2 | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , F ) ~~> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 147 | atanval | |- ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
|
| 148 | 85 147 | syl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 149 | 146 148 | breqtrrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , F ) ~~> ( arctan ` A ) ) |