This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Taylor series for arctan ( A ) . (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | atantayl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) | |
| Assertion | atantayl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , 𝐹 ) ⇝ ( arctan ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atantayl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) | |
| 2 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 3 | 1zzd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ℤ ) | |
| 4 | ax-icn | ⊢ i ∈ ℂ | |
| 5 | halfcl | ⊢ ( i ∈ ℂ → ( i / 2 ) ∈ ℂ ) | |
| 6 | 4 5 | mp1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( i / 2 ) ∈ ℂ ) |
| 7 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ ℂ ) | |
| 8 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 9 | 4 7 8 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( i · 𝐴 ) ∈ ℂ ) |
| 10 | 9 | negcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → - ( i · 𝐴 ) ∈ ℂ ) |
| 11 | 9 | absnegd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ - ( i · 𝐴 ) ) = ( abs ‘ ( i · 𝐴 ) ) ) |
| 12 | absmul | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( i · 𝐴 ) ) = ( ( abs ‘ i ) · ( abs ‘ 𝐴 ) ) ) | |
| 13 | 4 7 12 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( i · 𝐴 ) ) = ( ( abs ‘ i ) · ( abs ‘ 𝐴 ) ) ) |
| 14 | absi | ⊢ ( abs ‘ i ) = 1 | |
| 15 | 14 | oveq1i | ⊢ ( ( abs ‘ i ) · ( abs ‘ 𝐴 ) ) = ( 1 · ( abs ‘ 𝐴 ) ) |
| 16 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 18 | 17 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 19 | 18 | mullidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 1 · ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 20 | 15 19 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( abs ‘ i ) · ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 21 | 11 13 20 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ - ( i · 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 22 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) < 1 ) | |
| 23 | 21 22 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ - ( i · 𝐴 ) ) < 1 ) |
| 24 | logtayl | ⊢ ( ( - ( i · 𝐴 ) ∈ ℂ ∧ ( abs ‘ - ( i · 𝐴 ) ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ⇝ - ( log ‘ ( 1 − - ( i · 𝐴 ) ) ) ) | |
| 25 | 10 23 24 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ⇝ - ( log ‘ ( 1 − - ( i · 𝐴 ) ) ) ) |
| 26 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 27 | subneg | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 − - ( i · 𝐴 ) ) = ( 1 + ( i · 𝐴 ) ) ) | |
| 28 | 26 9 27 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 1 − - ( i · 𝐴 ) ) = ( 1 + ( i · 𝐴 ) ) ) |
| 29 | 28 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( log ‘ ( 1 − - ( i · 𝐴 ) ) ) = ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) |
| 30 | 29 | negeqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → - ( log ‘ ( 1 − - ( i · 𝐴 ) ) ) = - ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) |
| 31 | 25 30 | breqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ⇝ - ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) |
| 32 | seqex | ⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) − ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ) ∈ V | |
| 33 | 32 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) − ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ) ∈ V ) |
| 34 | 11 23 | eqbrtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( i · 𝐴 ) ) < 1 ) |
| 35 | logtayl | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ ( abs ‘ ( i · 𝐴 ) ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ⇝ - ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) | |
| 36 | 9 34 35 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ⇝ - ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) |
| 37 | oveq2 | ⊢ ( 𝑛 = 𝑚 → ( - ( i · 𝐴 ) ↑ 𝑛 ) = ( - ( i · 𝐴 ) ↑ 𝑚 ) ) | |
| 38 | id | ⊢ ( 𝑛 = 𝑚 → 𝑛 = 𝑚 ) | |
| 39 | 37 38 | oveq12d | ⊢ ( 𝑛 = 𝑚 → ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) = ( ( - ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ) |
| 40 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) | |
| 41 | ovex | ⊢ ( ( - ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ∈ V | |
| 42 | 39 40 41 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑚 ) = ( ( - ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ) |
| 43 | 42 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑚 ) = ( ( - ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ) |
| 44 | nnnn0 | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) | |
| 45 | expcl | ⊢ ( ( - ( i · 𝐴 ) ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( - ( i · 𝐴 ) ↑ 𝑚 ) ∈ ℂ ) | |
| 46 | 10 44 45 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( - ( i · 𝐴 ) ↑ 𝑚 ) ∈ ℂ ) |
| 47 | nncn | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) | |
| 48 | 47 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
| 49 | nnne0 | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ≠ 0 ) | |
| 50 | 49 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ≠ 0 ) |
| 51 | 46 48 50 | divcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( - ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ∈ ℂ ) |
| 52 | 43 51 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 53 | 2 3 52 | serf | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) : ℕ ⟶ ℂ ) |
| 54 | 53 | ffvelcdmda | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 55 | oveq2 | ⊢ ( 𝑛 = 𝑚 → ( ( i · 𝐴 ) ↑ 𝑛 ) = ( ( i · 𝐴 ) ↑ 𝑚 ) ) | |
| 56 | 55 38 | oveq12d | ⊢ ( 𝑛 = 𝑚 → ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) = ( ( ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ) |
| 57 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) | |
| 58 | ovex | ⊢ ( ( ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ∈ V | |
| 59 | 56 57 58 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑚 ) = ( ( ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ) |
| 60 | 59 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑚 ) = ( ( ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ) |
| 61 | expcl | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( ( i · 𝐴 ) ↑ 𝑚 ) ∈ ℂ ) | |
| 62 | 9 44 61 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( i · 𝐴 ) ↑ 𝑚 ) ∈ ℂ ) |
| 63 | 62 48 50 | divcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ∈ ℂ ) |
| 64 | 60 63 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 65 | 2 3 64 | serf | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) : ℕ ⟶ ℂ ) |
| 66 | 65 | ffvelcdmda | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 67 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) | |
| 68 | 67 2 | eleqtrdi | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 69 | simpl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ) | |
| 70 | elfznn | ⊢ ( 𝑚 ∈ ( 1 ... 𝑘 ) → 𝑚 ∈ ℕ ) | |
| 71 | 69 70 52 | syl2an | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 72 | 69 70 64 | syl2an | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 73 | 39 56 | oveq12d | ⊢ ( 𝑛 = 𝑚 → ( ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) − ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) = ( ( ( - ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) − ( ( ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ) ) |
| 74 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) − ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) − ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) | |
| 75 | ovex | ⊢ ( ( ( - ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) − ( ( ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ) ∈ V | |
| 76 | 73 74 75 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) − ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ‘ 𝑚 ) = ( ( ( - ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) − ( ( ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ) ) |
| 77 | 76 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) − ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ‘ 𝑚 ) = ( ( ( - ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) − ( ( ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ) ) |
| 78 | 43 60 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑚 ) − ( ( 𝑛 ∈ ℕ ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑚 ) ) = ( ( ( - ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) − ( ( ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ) ) |
| 79 | 77 78 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) − ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ‘ 𝑚 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑚 ) − ( ( 𝑛 ∈ ℕ ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑚 ) ) ) |
| 80 | 69 70 79 | syl2an | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) − ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ‘ 𝑚 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑚 ) − ( ( 𝑛 ∈ ℕ ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑚 ) ) ) |
| 81 | 68 71 72 80 | sersub | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) − ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ) ‘ 𝑘 ) = ( ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ‘ 𝑘 ) − ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 82 | 2 3 31 33 36 54 66 81 | climsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) − ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ) ⇝ ( - ( log ‘ ( 1 + ( i · 𝐴 ) ) ) − - ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) |
| 83 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) | |
| 84 | 26 9 83 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 85 | bndatandm | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ dom arctan ) | |
| 86 | atandm2 | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) | |
| 87 | 85 86 | sylib | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) |
| 88 | 87 | simp3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 1 + ( i · 𝐴 ) ) ≠ 0 ) |
| 89 | 84 88 | logcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 90 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) | |
| 91 | 26 9 90 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) |
| 92 | 87 | simp2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 1 − ( i · 𝐴 ) ) ≠ 0 ) |
| 93 | 91 92 | logcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 94 | 89 93 | neg2subd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( - ( log ‘ ( 1 + ( i · 𝐴 ) ) ) − - ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 95 | 82 94 | breqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) − ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ) ⇝ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 96 | 51 63 | subcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( ( - ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) − ( ( ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ) ∈ ℂ ) |
| 97 | 77 96 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) − ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 98 | 4 | a1i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → i ∈ ℂ ) |
| 99 | negicn | ⊢ - i ∈ ℂ | |
| 100 | 44 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ0 ) |
| 101 | expcl | ⊢ ( ( - i ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( - i ↑ 𝑚 ) ∈ ℂ ) | |
| 102 | 99 100 101 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( - i ↑ 𝑚 ) ∈ ℂ ) |
| 103 | expcl | ⊢ ( ( i ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( i ↑ 𝑚 ) ∈ ℂ ) | |
| 104 | 4 100 103 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( i ↑ 𝑚 ) ∈ ℂ ) |
| 105 | 102 104 | subcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) ∈ ℂ ) |
| 106 | 2cnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → 2 ∈ ℂ ) | |
| 107 | 2ne0 | ⊢ 2 ≠ 0 | |
| 108 | 107 | a1i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → 2 ≠ 0 ) |
| 109 | 98 105 106 108 | div23d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( i · ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) ) / 2 ) = ( ( i / 2 ) · ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) ) ) |
| 110 | 109 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( ( i · ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑚 ) / 𝑚 ) ) = ( ( ( i / 2 ) · ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) ) · ( ( 𝐴 ↑ 𝑚 ) / 𝑚 ) ) ) |
| 111 | 6 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( i / 2 ) ∈ ℂ ) |
| 112 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑚 ) ∈ ℂ ) | |
| 113 | 7 44 112 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( 𝐴 ↑ 𝑚 ) ∈ ℂ ) |
| 114 | 113 48 50 | divcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝐴 ↑ 𝑚 ) / 𝑚 ) ∈ ℂ ) |
| 115 | 111 105 114 | mulassd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( ( i / 2 ) · ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) ) · ( ( 𝐴 ↑ 𝑚 ) / 𝑚 ) ) = ( ( i / 2 ) · ( ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) · ( ( 𝐴 ↑ 𝑚 ) / 𝑚 ) ) ) ) |
| 116 | 102 104 113 | subdird | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) · ( 𝐴 ↑ 𝑚 ) ) = ( ( ( - i ↑ 𝑚 ) · ( 𝐴 ↑ 𝑚 ) ) − ( ( i ↑ 𝑚 ) · ( 𝐴 ↑ 𝑚 ) ) ) ) |
| 117 | 7 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 118 | mulneg1 | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) = - ( i · 𝐴 ) ) | |
| 119 | 4 117 118 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( - i · 𝐴 ) = - ( i · 𝐴 ) ) |
| 120 | 119 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( - i · 𝐴 ) ↑ 𝑚 ) = ( - ( i · 𝐴 ) ↑ 𝑚 ) ) |
| 121 | 99 | a1i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → - i ∈ ℂ ) |
| 122 | 121 117 100 | mulexpd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( - i · 𝐴 ) ↑ 𝑚 ) = ( ( - i ↑ 𝑚 ) · ( 𝐴 ↑ 𝑚 ) ) ) |
| 123 | 120 122 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( - ( i · 𝐴 ) ↑ 𝑚 ) = ( ( - i ↑ 𝑚 ) · ( 𝐴 ↑ 𝑚 ) ) ) |
| 124 | 98 117 100 | mulexpd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( i · 𝐴 ) ↑ 𝑚 ) = ( ( i ↑ 𝑚 ) · ( 𝐴 ↑ 𝑚 ) ) ) |
| 125 | 123 124 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( - ( i · 𝐴 ) ↑ 𝑚 ) − ( ( i · 𝐴 ) ↑ 𝑚 ) ) = ( ( ( - i ↑ 𝑚 ) · ( 𝐴 ↑ 𝑚 ) ) − ( ( i ↑ 𝑚 ) · ( 𝐴 ↑ 𝑚 ) ) ) ) |
| 126 | 116 125 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) · ( 𝐴 ↑ 𝑚 ) ) = ( ( - ( i · 𝐴 ) ↑ 𝑚 ) − ( ( i · 𝐴 ) ↑ 𝑚 ) ) ) |
| 127 | 126 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) · ( 𝐴 ↑ 𝑚 ) ) / 𝑚 ) = ( ( ( - ( i · 𝐴 ) ↑ 𝑚 ) − ( ( i · 𝐴 ) ↑ 𝑚 ) ) / 𝑚 ) ) |
| 128 | 105 113 48 50 | divassd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) · ( 𝐴 ↑ 𝑚 ) ) / 𝑚 ) = ( ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) · ( ( 𝐴 ↑ 𝑚 ) / 𝑚 ) ) ) |
| 129 | 46 62 48 50 | divsubdird | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( ( - ( i · 𝐴 ) ↑ 𝑚 ) − ( ( i · 𝐴 ) ↑ 𝑚 ) ) / 𝑚 ) = ( ( ( - ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) − ( ( ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ) ) |
| 130 | 127 128 129 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) · ( ( 𝐴 ↑ 𝑚 ) / 𝑚 ) ) = ( ( ( - ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) − ( ( ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ) ) |
| 131 | 130 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( i / 2 ) · ( ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) · ( ( 𝐴 ↑ 𝑚 ) / 𝑚 ) ) ) = ( ( i / 2 ) · ( ( ( - ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) − ( ( ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ) ) ) |
| 132 | 110 115 131 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( ( i · ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑚 ) / 𝑚 ) ) = ( ( i / 2 ) · ( ( ( - ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) − ( ( ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ) ) ) |
| 133 | oveq2 | ⊢ ( 𝑛 = 𝑚 → ( - i ↑ 𝑛 ) = ( - i ↑ 𝑚 ) ) | |
| 134 | oveq2 | ⊢ ( 𝑛 = 𝑚 → ( i ↑ 𝑛 ) = ( i ↑ 𝑚 ) ) | |
| 135 | 133 134 | oveq12d | ⊢ ( 𝑛 = 𝑚 → ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) = ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) ) |
| 136 | 135 | oveq2d | ⊢ ( 𝑛 = 𝑚 → ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) = ( i · ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) ) ) |
| 137 | 136 | oveq1d | ⊢ ( 𝑛 = 𝑚 → ( ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) / 2 ) = ( ( i · ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) ) / 2 ) ) |
| 138 | oveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑚 ) ) | |
| 139 | 138 38 | oveq12d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) = ( ( 𝐴 ↑ 𝑚 ) / 𝑚 ) ) |
| 140 | 137 139 | oveq12d | ⊢ ( 𝑛 = 𝑚 → ( ( ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) = ( ( ( i · ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑚 ) / 𝑚 ) ) ) |
| 141 | ovex | ⊢ ( ( ( i · ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑚 ) / 𝑚 ) ) ∈ V | |
| 142 | 140 1 141 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( 𝐹 ‘ 𝑚 ) = ( ( ( i · ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑚 ) / 𝑚 ) ) ) |
| 143 | 142 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) = ( ( ( i · ( ( - i ↑ 𝑚 ) − ( i ↑ 𝑚 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑚 ) / 𝑚 ) ) ) |
| 144 | 77 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( ( i / 2 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) − ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ‘ 𝑚 ) ) = ( ( i / 2 ) · ( ( ( - ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) − ( ( ( i · 𝐴 ) ↑ 𝑚 ) / 𝑚 ) ) ) ) |
| 145 | 132 143 144 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) = ( ( i / 2 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( ( - ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) − ( ( ( i · 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) ‘ 𝑚 ) ) ) |
| 146 | 2 3 6 95 97 145 | isermulc2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , 𝐹 ) ⇝ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |
| 147 | atanval | ⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ 𝐴 ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) | |
| 148 | 85 147 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( arctan ‘ 𝐴 ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |
| 149 | 146 148 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , 𝐹 ) ⇝ ( arctan ‘ 𝐴 ) ) |