This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent function distributes under conjugation. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atandmcj | |- ( A e. dom arctan -> ( * ` A ) e. dom arctan ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atandm3 | |- ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) ) |
|
| 2 | 1 | simplbi | |- ( A e. dom arctan -> A e. CC ) |
| 3 | 2 | cjcld | |- ( A e. dom arctan -> ( * ` A ) e. CC ) |
| 4 | 2nn0 | |- 2 e. NN0 |
|
| 5 | cjexp | |- ( ( A e. CC /\ 2 e. NN0 ) -> ( * ` ( A ^ 2 ) ) = ( ( * ` A ) ^ 2 ) ) |
|
| 6 | 2 4 5 | sylancl | |- ( A e. dom arctan -> ( * ` ( A ^ 2 ) ) = ( ( * ` A ) ^ 2 ) ) |
| 7 | 2 | sqcld | |- ( A e. dom arctan -> ( A ^ 2 ) e. CC ) |
| 8 | 7 | cjcjd | |- ( A e. dom arctan -> ( * ` ( * ` ( A ^ 2 ) ) ) = ( A ^ 2 ) ) |
| 9 | 1 | simprbi | |- ( A e. dom arctan -> ( A ^ 2 ) =/= -u 1 ) |
| 10 | 8 9 | eqnetrd | |- ( A e. dom arctan -> ( * ` ( * ` ( A ^ 2 ) ) ) =/= -u 1 ) |
| 11 | fveq2 | |- ( ( * ` ( A ^ 2 ) ) = -u 1 -> ( * ` ( * ` ( A ^ 2 ) ) ) = ( * ` -u 1 ) ) |
|
| 12 | neg1rr | |- -u 1 e. RR |
|
| 13 | cjre | |- ( -u 1 e. RR -> ( * ` -u 1 ) = -u 1 ) |
|
| 14 | 12 13 | ax-mp | |- ( * ` -u 1 ) = -u 1 |
| 15 | 11 14 | eqtrdi | |- ( ( * ` ( A ^ 2 ) ) = -u 1 -> ( * ` ( * ` ( A ^ 2 ) ) ) = -u 1 ) |
| 16 | 15 | necon3i | |- ( ( * ` ( * ` ( A ^ 2 ) ) ) =/= -u 1 -> ( * ` ( A ^ 2 ) ) =/= -u 1 ) |
| 17 | 10 16 | syl | |- ( A e. dom arctan -> ( * ` ( A ^ 2 ) ) =/= -u 1 ) |
| 18 | 6 17 | eqnetrrd | |- ( A e. dom arctan -> ( ( * ` A ) ^ 2 ) =/= -u 1 ) |
| 19 | atandm3 | |- ( ( * ` A ) e. dom arctan <-> ( ( * ` A ) e. CC /\ ( ( * ` A ) ^ 2 ) =/= -u 1 ) ) |
|
| 20 | 3 18 19 | sylanbrc | |- ( A e. dom arctan -> ( * ` A ) e. dom arctan ) |