This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real part of a complex number in terms of the imaginary part function. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reim | |- ( A e. CC -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 3 | 1 2 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 4 | imval | |- ( ( _i x. A ) e. CC -> ( Im ` ( _i x. A ) ) = ( Re ` ( ( _i x. A ) / _i ) ) ) |
|
| 5 | 3 4 | syl | |- ( A e. CC -> ( Im ` ( _i x. A ) ) = ( Re ` ( ( _i x. A ) / _i ) ) ) |
| 6 | ine0 | |- _i =/= 0 |
|
| 7 | divcan3 | |- ( ( A e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( _i x. A ) / _i ) = A ) |
|
| 8 | 1 6 7 | mp3an23 | |- ( A e. CC -> ( ( _i x. A ) / _i ) = A ) |
| 9 | 8 | fveq2d | |- ( A e. CC -> ( Re ` ( ( _i x. A ) / _i ) ) = ( Re ` A ) ) |
| 10 | 5 9 | eqtr2d | |- ( A e. CC -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) |