This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent function is odd. (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanneg | |- ( A e. dom arctan -> ( arctan ` -u A ) = -u ( arctan ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | atandm2 | |- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
|
| 3 | 2 | simp1bi | |- ( A e. dom arctan -> A e. CC ) |
| 4 | mulneg2 | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
|
| 5 | 1 3 4 | sylancr | |- ( A e. dom arctan -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 6 | 5 | oveq2d | |- ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 - -u ( _i x. A ) ) ) |
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 9 | 1 3 8 | sylancr | |- ( A e. dom arctan -> ( _i x. A ) e. CC ) |
| 10 | subneg | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) |
|
| 11 | 7 9 10 | sylancr | |- ( A e. dom arctan -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) |
| 12 | 6 11 | eqtrd | |- ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 + ( _i x. A ) ) ) |
| 13 | 12 | fveq2d | |- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. -u A ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) |
| 14 | 5 | oveq2d | |- ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 + -u ( _i x. A ) ) ) |
| 15 | negsub | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) |
|
| 16 | 7 9 15 | sylancr | |- ( A e. dom arctan -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) |
| 17 | 14 16 | eqtrd | |- ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 - ( _i x. A ) ) ) |
| 18 | 17 | fveq2d | |- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. -u A ) ) ) = ( log ` ( 1 - ( _i x. A ) ) ) ) |
| 19 | 13 18 | oveq12d | |- ( A e. dom arctan -> ( ( log ` ( 1 - ( _i x. -u A ) ) ) - ( log ` ( 1 + ( _i x. -u A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 20 | subcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
|
| 21 | 7 9 20 | sylancr | |- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) |
| 22 | 2 | simp2bi | |- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) |
| 23 | 21 22 | logcld | |- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
| 24 | addcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
|
| 25 | 7 9 24 | sylancr | |- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) |
| 26 | 2 | simp3bi | |- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) |
| 27 | 25 26 | logcld | |- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
| 28 | 23 27 | negsubdi2d | |- ( A e. dom arctan -> -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 29 | 19 28 | eqtr4d | |- ( A e. dom arctan -> ( ( log ` ( 1 - ( _i x. -u A ) ) ) - ( log ` ( 1 + ( _i x. -u A ) ) ) ) = -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 30 | 29 | oveq2d | |- ( A e. dom arctan -> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. -u A ) ) ) - ( log ` ( 1 + ( _i x. -u A ) ) ) ) ) = ( ( _i / 2 ) x. -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 31 | halfcl | |- ( _i e. CC -> ( _i / 2 ) e. CC ) |
|
| 32 | 1 31 | ax-mp | |- ( _i / 2 ) e. CC |
| 33 | 23 27 | subcld | |- ( A e. dom arctan -> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
| 34 | mulneg2 | |- ( ( ( _i / 2 ) e. CC /\ ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) -> ( ( _i / 2 ) x. -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
|
| 35 | 32 33 34 | sylancr | |- ( A e. dom arctan -> ( ( _i / 2 ) x. -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 36 | 30 35 | eqtrd | |- ( A e. dom arctan -> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. -u A ) ) ) - ( log ` ( 1 + ( _i x. -u A ) ) ) ) ) = -u ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 37 | atandmneg | |- ( A e. dom arctan -> -u A e. dom arctan ) |
|
| 38 | atanval | |- ( -u A e. dom arctan -> ( arctan ` -u A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. -u A ) ) ) - ( log ` ( 1 + ( _i x. -u A ) ) ) ) ) ) |
|
| 39 | 37 38 | syl | |- ( A e. dom arctan -> ( arctan ` -u A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. -u A ) ) ) - ( log ` ( 1 + ( _i x. -u A ) ) ) ) ) ) |
| 40 | atanval | |- ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
|
| 41 | 40 | negeqd | |- ( A e. dom arctan -> -u ( arctan ` A ) = -u ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 42 | 36 39 41 | 3eqtr4d | |- ( A e. dom arctan -> ( arctan ` -u A ) = -u ( arctan ` A ) ) |