This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex conjugate distributes over subtraction. (Contributed by NM, 28-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjsub | |- ( ( A e. CC /\ B e. CC ) -> ( * ` ( A - B ) ) = ( ( * ` A ) - ( * ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | |- ( B e. CC -> -u B e. CC ) |
|
| 2 | cjadd | |- ( ( A e. CC /\ -u B e. CC ) -> ( * ` ( A + -u B ) ) = ( ( * ` A ) + ( * ` -u B ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. CC /\ B e. CC ) -> ( * ` ( A + -u B ) ) = ( ( * ` A ) + ( * ` -u B ) ) ) |
| 4 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
|
| 5 | 4 | fveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( * ` ( A + -u B ) ) = ( * ` ( A - B ) ) ) |
| 6 | cjneg | |- ( B e. CC -> ( * ` -u B ) = -u ( * ` B ) ) |
|
| 7 | 6 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( * ` -u B ) = -u ( * ` B ) ) |
| 8 | 7 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( * ` A ) + ( * ` -u B ) ) = ( ( * ` A ) + -u ( * ` B ) ) ) |
| 9 | cjcl | |- ( A e. CC -> ( * ` A ) e. CC ) |
|
| 10 | cjcl | |- ( B e. CC -> ( * ` B ) e. CC ) |
|
| 11 | negsub | |- ( ( ( * ` A ) e. CC /\ ( * ` B ) e. CC ) -> ( ( * ` A ) + -u ( * ` B ) ) = ( ( * ` A ) - ( * ` B ) ) ) |
|
| 12 | 9 10 11 | syl2an | |- ( ( A e. CC /\ B e. CC ) -> ( ( * ` A ) + -u ( * ` B ) ) = ( ( * ` A ) - ( * ` B ) ) ) |
| 13 | 8 12 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( * ` A ) + ( * ` -u B ) ) = ( ( * ` A ) - ( * ` B ) ) ) |
| 14 | 3 5 13 | 3eqtr3d | |- ( ( A e. CC /\ B e. CC ) -> ( * ` ( A - B ) ) = ( ( * ` A ) - ( * ` B ) ) ) |