This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-to-one mapping induces a one-to-one mapping on finite subsets. (Contributed by Mario Carneiro, 25-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1opwfi | |- ( F : A -1-1-onto-> B -> ( b e. ( ~P A i^i Fin ) |-> ( F " b ) ) : ( ~P A i^i Fin ) -1-1-onto-> ( ~P B i^i Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( b e. ( ~P A i^i Fin ) |-> ( F " b ) ) = ( b e. ( ~P A i^i Fin ) |-> ( F " b ) ) |
|
| 2 | simpr | |- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> b e. ( ~P A i^i Fin ) ) |
|
| 3 | 2 | elin2d | |- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> b e. Fin ) |
| 4 | f1ofun | |- ( F : A -1-1-onto-> B -> Fun F ) |
|
| 5 | elinel1 | |- ( b e. ( ~P A i^i Fin ) -> b e. ~P A ) |
|
| 6 | elpwi | |- ( b e. ~P A -> b C_ A ) |
|
| 7 | 5 6 | syl | |- ( b e. ( ~P A i^i Fin ) -> b C_ A ) |
| 8 | 7 | adantl | |- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> b C_ A ) |
| 9 | f1odm | |- ( F : A -1-1-onto-> B -> dom F = A ) |
|
| 10 | 9 | adantr | |- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> dom F = A ) |
| 11 | 8 10 | sseqtrrd | |- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> b C_ dom F ) |
| 12 | fores | |- ( ( Fun F /\ b C_ dom F ) -> ( F |` b ) : b -onto-> ( F " b ) ) |
|
| 13 | 4 11 12 | syl2an2r | |- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> ( F |` b ) : b -onto-> ( F " b ) ) |
| 14 | fofi | |- ( ( b e. Fin /\ ( F |` b ) : b -onto-> ( F " b ) ) -> ( F " b ) e. Fin ) |
|
| 15 | 3 13 14 | syl2anc | |- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> ( F " b ) e. Fin ) |
| 16 | imassrn | |- ( F " b ) C_ ran F |
|
| 17 | f1ofo | |- ( F : A -1-1-onto-> B -> F : A -onto-> B ) |
|
| 18 | forn | |- ( F : A -onto-> B -> ran F = B ) |
|
| 19 | 17 18 | syl | |- ( F : A -1-1-onto-> B -> ran F = B ) |
| 20 | 16 19 | sseqtrid | |- ( F : A -1-1-onto-> B -> ( F " b ) C_ B ) |
| 21 | 20 | adantr | |- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> ( F " b ) C_ B ) |
| 22 | 15 21 | elpwd | |- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> ( F " b ) e. ~P B ) |
| 23 | 22 15 | elind | |- ( ( F : A -1-1-onto-> B /\ b e. ( ~P A i^i Fin ) ) -> ( F " b ) e. ( ~P B i^i Fin ) ) |
| 24 | simpr | |- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> a e. ( ~P B i^i Fin ) ) |
|
| 25 | 24 | elin2d | |- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> a e. Fin ) |
| 26 | dff1o3 | |- ( F : A -1-1-onto-> B <-> ( F : A -onto-> B /\ Fun `' F ) ) |
|
| 27 | 26 | simprbi | |- ( F : A -1-1-onto-> B -> Fun `' F ) |
| 28 | elinel1 | |- ( a e. ( ~P B i^i Fin ) -> a e. ~P B ) |
|
| 29 | 28 | adantl | |- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> a e. ~P B ) |
| 30 | elpwi | |- ( a e. ~P B -> a C_ B ) |
|
| 31 | 29 30 | syl | |- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> a C_ B ) |
| 32 | f1ocnv | |- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
|
| 33 | 32 | adantr | |- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> `' F : B -1-1-onto-> A ) |
| 34 | f1odm | |- ( `' F : B -1-1-onto-> A -> dom `' F = B ) |
|
| 35 | 33 34 | syl | |- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> dom `' F = B ) |
| 36 | 31 35 | sseqtrrd | |- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> a C_ dom `' F ) |
| 37 | fores | |- ( ( Fun `' F /\ a C_ dom `' F ) -> ( `' F |` a ) : a -onto-> ( `' F " a ) ) |
|
| 38 | 27 36 37 | syl2an2r | |- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> ( `' F |` a ) : a -onto-> ( `' F " a ) ) |
| 39 | fofi | |- ( ( a e. Fin /\ ( `' F |` a ) : a -onto-> ( `' F " a ) ) -> ( `' F " a ) e. Fin ) |
|
| 40 | 25 38 39 | syl2anc | |- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> ( `' F " a ) e. Fin ) |
| 41 | imassrn | |- ( `' F " a ) C_ ran `' F |
|
| 42 | dfdm4 | |- dom F = ran `' F |
|
| 43 | 42 9 | eqtr3id | |- ( F : A -1-1-onto-> B -> ran `' F = A ) |
| 44 | 41 43 | sseqtrid | |- ( F : A -1-1-onto-> B -> ( `' F " a ) C_ A ) |
| 45 | 44 | adantr | |- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> ( `' F " a ) C_ A ) |
| 46 | 40 45 | elpwd | |- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> ( `' F " a ) e. ~P A ) |
| 47 | 46 40 | elind | |- ( ( F : A -1-1-onto-> B /\ a e. ( ~P B i^i Fin ) ) -> ( `' F " a ) e. ( ~P A i^i Fin ) ) |
| 48 | 5 28 | anim12i | |- ( ( b e. ( ~P A i^i Fin ) /\ a e. ( ~P B i^i Fin ) ) -> ( b e. ~P A /\ a e. ~P B ) ) |
| 49 | 30 | adantl | |- ( ( b e. ~P A /\ a e. ~P B ) -> a C_ B ) |
| 50 | foimacnv | |- ( ( F : A -onto-> B /\ a C_ B ) -> ( F " ( `' F " a ) ) = a ) |
|
| 51 | 17 49 50 | syl2an | |- ( ( F : A -1-1-onto-> B /\ ( b e. ~P A /\ a e. ~P B ) ) -> ( F " ( `' F " a ) ) = a ) |
| 52 | 51 | eqcomd | |- ( ( F : A -1-1-onto-> B /\ ( b e. ~P A /\ a e. ~P B ) ) -> a = ( F " ( `' F " a ) ) ) |
| 53 | imaeq2 | |- ( b = ( `' F " a ) -> ( F " b ) = ( F " ( `' F " a ) ) ) |
|
| 54 | 53 | eqeq2d | |- ( b = ( `' F " a ) -> ( a = ( F " b ) <-> a = ( F " ( `' F " a ) ) ) ) |
| 55 | 52 54 | syl5ibrcom | |- ( ( F : A -1-1-onto-> B /\ ( b e. ~P A /\ a e. ~P B ) ) -> ( b = ( `' F " a ) -> a = ( F " b ) ) ) |
| 56 | f1of1 | |- ( F : A -1-1-onto-> B -> F : A -1-1-> B ) |
|
| 57 | 6 | adantr | |- ( ( b e. ~P A /\ a e. ~P B ) -> b C_ A ) |
| 58 | f1imacnv | |- ( ( F : A -1-1-> B /\ b C_ A ) -> ( `' F " ( F " b ) ) = b ) |
|
| 59 | 56 57 58 | syl2an | |- ( ( F : A -1-1-onto-> B /\ ( b e. ~P A /\ a e. ~P B ) ) -> ( `' F " ( F " b ) ) = b ) |
| 60 | 59 | eqcomd | |- ( ( F : A -1-1-onto-> B /\ ( b e. ~P A /\ a e. ~P B ) ) -> b = ( `' F " ( F " b ) ) ) |
| 61 | imaeq2 | |- ( a = ( F " b ) -> ( `' F " a ) = ( `' F " ( F " b ) ) ) |
|
| 62 | 61 | eqeq2d | |- ( a = ( F " b ) -> ( b = ( `' F " a ) <-> b = ( `' F " ( F " b ) ) ) ) |
| 63 | 60 62 | syl5ibrcom | |- ( ( F : A -1-1-onto-> B /\ ( b e. ~P A /\ a e. ~P B ) ) -> ( a = ( F " b ) -> b = ( `' F " a ) ) ) |
| 64 | 55 63 | impbid | |- ( ( F : A -1-1-onto-> B /\ ( b e. ~P A /\ a e. ~P B ) ) -> ( b = ( `' F " a ) <-> a = ( F " b ) ) ) |
| 65 | 48 64 | sylan2 | |- ( ( F : A -1-1-onto-> B /\ ( b e. ( ~P A i^i Fin ) /\ a e. ( ~P B i^i Fin ) ) ) -> ( b = ( `' F " a ) <-> a = ( F " b ) ) ) |
| 66 | 1 23 47 65 | f1o2d | |- ( F : A -1-1-onto-> B -> ( b e. ( ~P A i^i Fin ) |-> ( F " b ) ) : ( ~P A i^i Fin ) -1-1-onto-> ( ~P B i^i Fin ) ) |