This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a disjoint indexed union. (Contributed by Mario Carneiro, 24-Jan-2015) (Revised by Mario Carneiro, 10-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumiun.1 | |- ( ph -> A e. Fin ) |
|
| fsumiun.2 | |- ( ( ph /\ x e. A ) -> B e. Fin ) |
||
| fsumiun.3 | |- ( ph -> Disj_ x e. A B ) |
||
| Assertion | hashiun | |- ( ph -> ( # ` U_ x e. A B ) = sum_ x e. A ( # ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumiun.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsumiun.2 | |- ( ( ph /\ x e. A ) -> B e. Fin ) |
|
| 3 | fsumiun.3 | |- ( ph -> Disj_ x e. A B ) |
|
| 4 | 1cnd | |- ( ( ph /\ ( x e. A /\ k e. B ) ) -> 1 e. CC ) |
|
| 5 | 1 2 3 4 | fsumiun | |- ( ph -> sum_ k e. U_ x e. A B 1 = sum_ x e. A sum_ k e. B 1 ) |
| 6 | 2 | ralrimiva | |- ( ph -> A. x e. A B e. Fin ) |
| 7 | iunfi | |- ( ( A e. Fin /\ A. x e. A B e. Fin ) -> U_ x e. A B e. Fin ) |
|
| 8 | 1 6 7 | syl2anc | |- ( ph -> U_ x e. A B e. Fin ) |
| 9 | ax-1cn | |- 1 e. CC |
|
| 10 | fsumconst | |- ( ( U_ x e. A B e. Fin /\ 1 e. CC ) -> sum_ k e. U_ x e. A B 1 = ( ( # ` U_ x e. A B ) x. 1 ) ) |
|
| 11 | 8 9 10 | sylancl | |- ( ph -> sum_ k e. U_ x e. A B 1 = ( ( # ` U_ x e. A B ) x. 1 ) ) |
| 12 | hashcl | |- ( U_ x e. A B e. Fin -> ( # ` U_ x e. A B ) e. NN0 ) |
|
| 13 | nn0cn | |- ( ( # ` U_ x e. A B ) e. NN0 -> ( # ` U_ x e. A B ) e. CC ) |
|
| 14 | mulrid | |- ( ( # ` U_ x e. A B ) e. CC -> ( ( # ` U_ x e. A B ) x. 1 ) = ( # ` U_ x e. A B ) ) |
|
| 15 | 8 12 13 14 | 4syl | |- ( ph -> ( ( # ` U_ x e. A B ) x. 1 ) = ( # ` U_ x e. A B ) ) |
| 16 | 11 15 | eqtrd | |- ( ph -> sum_ k e. U_ x e. A B 1 = ( # ` U_ x e. A B ) ) |
| 17 | fsumconst | |- ( ( B e. Fin /\ 1 e. CC ) -> sum_ k e. B 1 = ( ( # ` B ) x. 1 ) ) |
|
| 18 | 2 9 17 | sylancl | |- ( ( ph /\ x e. A ) -> sum_ k e. B 1 = ( ( # ` B ) x. 1 ) ) |
| 19 | hashcl | |- ( B e. Fin -> ( # ` B ) e. NN0 ) |
|
| 20 | nn0cn | |- ( ( # ` B ) e. NN0 -> ( # ` B ) e. CC ) |
|
| 21 | mulrid | |- ( ( # ` B ) e. CC -> ( ( # ` B ) x. 1 ) = ( # ` B ) ) |
|
| 22 | 2 19 20 21 | 4syl | |- ( ( ph /\ x e. A ) -> ( ( # ` B ) x. 1 ) = ( # ` B ) ) |
| 23 | 18 22 | eqtrd | |- ( ( ph /\ x e. A ) -> sum_ k e. B 1 = ( # ` B ) ) |
| 24 | 23 | sumeq2dv | |- ( ph -> sum_ x e. A sum_ k e. B 1 = sum_ x e. A ( # ` B ) ) |
| 25 | 5 16 24 | 3eqtr3d | |- ( ph -> ( # ` U_ x e. A B ) = sum_ x e. A ( # ` B ) ) |