This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashxp | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq2 | |- ( B = if ( B e. Fin , B , (/) ) -> ( A X. B ) = ( A X. if ( B e. Fin , B , (/) ) ) ) |
|
| 2 | 1 | fveq2d | |- ( B = if ( B e. Fin , B , (/) ) -> ( # ` ( A X. B ) ) = ( # ` ( A X. if ( B e. Fin , B , (/) ) ) ) ) |
| 3 | fveq2 | |- ( B = if ( B e. Fin , B , (/) ) -> ( # ` B ) = ( # ` if ( B e. Fin , B , (/) ) ) ) |
|
| 4 | 3 | oveq2d | |- ( B = if ( B e. Fin , B , (/) ) -> ( ( # ` A ) x. ( # ` B ) ) = ( ( # ` A ) x. ( # ` if ( B e. Fin , B , (/) ) ) ) ) |
| 5 | 2 4 | eqeq12d | |- ( B = if ( B e. Fin , B , (/) ) -> ( ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) <-> ( # ` ( A X. if ( B e. Fin , B , (/) ) ) ) = ( ( # ` A ) x. ( # ` if ( B e. Fin , B , (/) ) ) ) ) ) |
| 6 | 5 | imbi2d | |- ( B = if ( B e. Fin , B , (/) ) -> ( ( A e. Fin -> ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) <-> ( A e. Fin -> ( # ` ( A X. if ( B e. Fin , B , (/) ) ) ) = ( ( # ` A ) x. ( # ` if ( B e. Fin , B , (/) ) ) ) ) ) ) |
| 7 | 0fi | |- (/) e. Fin |
|
| 8 | 7 | elimel | |- if ( B e. Fin , B , (/) ) e. Fin |
| 9 | 8 | hashxplem | |- ( A e. Fin -> ( # ` ( A X. if ( B e. Fin , B , (/) ) ) ) = ( ( # ` A ) x. ( # ` if ( B e. Fin , B , (/) ) ) ) ) |
| 10 | 6 9 | dedth | |- ( B e. Fin -> ( A e. Fin -> ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) ) |
| 11 | 10 | impcom | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) |