This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A short expression for the G function of hashgf1o . (Contributed by Mario Carneiro, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashgval2 | |- ( # |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashresfn | |- ( # |` _om ) Fn _om |
|
| 2 | frfnom | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) Fn _om |
|
| 3 | eqfnfv | |- ( ( ( # |` _om ) Fn _om /\ ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) Fn _om ) -> ( ( # |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) <-> A. y e. _om ( ( # |` _om ) ` y ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` y ) ) ) |
|
| 4 | 1 2 3 | mp2an | |- ( ( # |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) <-> A. y e. _om ( ( # |` _om ) ` y ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` y ) ) |
| 5 | fvres | |- ( y e. _om -> ( ( # |` _om ) ` y ) = ( # ` y ) ) |
|
| 6 | nnfi | |- ( y e. _om -> y e. Fin ) |
|
| 7 | eqid | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| 8 | 7 | hashgval | |- ( y e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` y ) ) = ( # ` y ) ) |
| 9 | 6 8 | syl | |- ( y e. _om -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` y ) ) = ( # ` y ) ) |
| 10 | cardnn | |- ( y e. _om -> ( card ` y ) = y ) |
|
| 11 | 10 | fveq2d | |- ( y e. _om -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` y ) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` y ) ) |
| 12 | 5 9 11 | 3eqtr2d | |- ( y e. _om -> ( ( # |` _om ) ` y ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` y ) ) |
| 13 | 4 12 | mprgbir | |- ( # |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |