This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012) (Proof shortened by Mario Carneiro, 13-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashsng | |- ( A e. V -> ( # ` { A } ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | |- 1 e. ZZ |
|
| 2 | en2sn | |- ( ( A e. V /\ 1 e. ZZ ) -> { A } ~~ { 1 } ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. V -> { A } ~~ { 1 } ) |
| 4 | snfi | |- { A } e. Fin |
|
| 5 | snfi | |- { 1 } e. Fin |
|
| 6 | hashen | |- ( ( { A } e. Fin /\ { 1 } e. Fin ) -> ( ( # ` { A } ) = ( # ` { 1 } ) <-> { A } ~~ { 1 } ) ) |
|
| 7 | 4 5 6 | mp2an | |- ( ( # ` { A } ) = ( # ` { 1 } ) <-> { A } ~~ { 1 } ) |
| 8 | 3 7 | sylibr | |- ( A e. V -> ( # ` { A } ) = ( # ` { 1 } ) ) |
| 9 | fzsn | |- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
|
| 10 | 9 | fveq2d | |- ( 1 e. ZZ -> ( # ` ( 1 ... 1 ) ) = ( # ` { 1 } ) ) |
| 11 | 1nn0 | |- 1 e. NN0 |
|
| 12 | hashfz1 | |- ( 1 e. NN0 -> ( # ` ( 1 ... 1 ) ) = 1 ) |
|
| 13 | 11 12 | ax-mp | |- ( # ` ( 1 ... 1 ) ) = 1 |
| 14 | 10 13 | eqtr3di | |- ( 1 e. ZZ -> ( # ` { 1 } ) = 1 ) |
| 15 | 1 14 | ax-mp | |- ( # ` { 1 } ) = 1 |
| 16 | 8 15 | eqtrdi | |- ( A e. V -> ( # ` { A } ) = 1 ) |