This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
||
| abelth.3 | |- ( ph -> M e. RR ) |
||
| abelth.4 | |- ( ph -> 0 <_ M ) |
||
| abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
||
| Assertion | abelthlem3 | |- ( ( ph /\ X e. S ) -> seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| 2 | abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
|
| 3 | abelth.3 | |- ( ph -> M e. RR ) |
|
| 4 | abelth.4 | |- ( ph -> 0 <_ M ) |
|
| 5 | abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
|
| 6 | 1 2 3 4 5 | abelthlem2 | |- ( ph -> ( 1 e. S /\ ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 7 | 6 | simprd | |- ( ph -> ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
| 8 | ssundif | |- ( S C_ ( { 1 } u. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) <-> ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
|
| 9 | 7 8 | sylibr | |- ( ph -> S C_ ( { 1 } u. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 10 | 9 | sselda | |- ( ( ph /\ X e. S ) -> X e. ( { 1 } u. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 11 | elun | |- ( X e. ( { 1 } u. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) <-> ( X e. { 1 } \/ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
|
| 12 | 10 11 | sylib | |- ( ( ph /\ X e. S ) -> ( X e. { 1 } \/ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 13 | 1 | feqmptd | |- ( ph -> A = ( n e. NN0 |-> ( A ` n ) ) ) |
| 14 | 1 | ffvelcdmda | |- ( ( ph /\ n e. NN0 ) -> ( A ` n ) e. CC ) |
| 15 | 14 | mulridd | |- ( ( ph /\ n e. NN0 ) -> ( ( A ` n ) x. 1 ) = ( A ` n ) ) |
| 16 | 15 | mpteq2dva | |- ( ph -> ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) = ( n e. NN0 |-> ( A ` n ) ) ) |
| 17 | 13 16 | eqtr4d | |- ( ph -> A = ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) ) |
| 18 | elsni | |- ( X e. { 1 } -> X = 1 ) |
|
| 19 | 18 | oveq1d | |- ( X e. { 1 } -> ( X ^ n ) = ( 1 ^ n ) ) |
| 20 | nn0z | |- ( n e. NN0 -> n e. ZZ ) |
|
| 21 | 1exp | |- ( n e. ZZ -> ( 1 ^ n ) = 1 ) |
|
| 22 | 20 21 | syl | |- ( n e. NN0 -> ( 1 ^ n ) = 1 ) |
| 23 | 19 22 | sylan9eq | |- ( ( X e. { 1 } /\ n e. NN0 ) -> ( X ^ n ) = 1 ) |
| 24 | 23 | oveq2d | |- ( ( X e. { 1 } /\ n e. NN0 ) -> ( ( A ` n ) x. ( X ^ n ) ) = ( ( A ` n ) x. 1 ) ) |
| 25 | 24 | mpteq2dva | |- ( X e. { 1 } -> ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) = ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) ) |
| 26 | 25 | eqcomd | |- ( X e. { 1 } -> ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) = ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) |
| 27 | 17 26 | sylan9eq | |- ( ( ph /\ X e. { 1 } ) -> A = ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) |
| 28 | 27 | seqeq3d | |- ( ( ph /\ X e. { 1 } ) -> seq 0 ( + , A ) = seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) ) |
| 29 | 2 | adantr | |- ( ( ph /\ X e. { 1 } ) -> seq 0 ( + , A ) e. dom ~~> ) |
| 30 | 28 29 | eqeltrrd | |- ( ( ph /\ X e. { 1 } ) -> seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) e. dom ~~> ) |
| 31 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 32 | 0cn | |- 0 e. CC |
|
| 33 | 1xr | |- 1 e. RR* |
|
| 34 | blssm | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ 1 e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) |
|
| 35 | 31 32 33 34 | mp3an | |- ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ CC |
| 36 | simpr | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
|
| 37 | 35 36 | sselid | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> X e. CC ) |
| 38 | oveq1 | |- ( z = X -> ( z ^ n ) = ( X ^ n ) ) |
|
| 39 | 38 | oveq2d | |- ( z = X -> ( ( A ` n ) x. ( z ^ n ) ) = ( ( A ` n ) x. ( X ^ n ) ) ) |
| 40 | 39 | mpteq2dv | |- ( z = X -> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) = ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) |
| 41 | eqid | |- ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) = ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) |
|
| 42 | nn0ex | |- NN0 e. _V |
|
| 43 | 42 | mptex | |- ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) e. _V |
| 44 | 40 41 43 | fvmpt | |- ( X e. CC -> ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` X ) = ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) |
| 45 | 37 44 | syl | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` X ) = ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) |
| 46 | 45 | seqeq3d | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` X ) ) = seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) ) |
| 47 | 1 | adantr | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> A : NN0 --> CC ) |
| 48 | eqid | |- sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) = sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) |
|
| 49 | 37 | abscld | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( abs ` X ) e. RR ) |
| 50 | 49 | rexrd | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( abs ` X ) e. RR* ) |
| 51 | 1re | |- 1 e. RR |
|
| 52 | rexr | |- ( 1 e. RR -> 1 e. RR* ) |
|
| 53 | 51 52 | mp1i | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> 1 e. RR* ) |
| 54 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 55 | 41 47 48 | radcnvcl | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. ( 0 [,] +oo ) ) |
| 56 | 54 55 | sselid | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) |
| 57 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 58 | 57 | cnmetdval | |- ( ( X e. CC /\ 0 e. CC ) -> ( X ( abs o. - ) 0 ) = ( abs ` ( X - 0 ) ) ) |
| 59 | 37 32 58 | sylancl | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( X ( abs o. - ) 0 ) = ( abs ` ( X - 0 ) ) ) |
| 60 | 37 | subid1d | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( X - 0 ) = X ) |
| 61 | 60 | fveq2d | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( abs ` ( X - 0 ) ) = ( abs ` X ) ) |
| 62 | 59 61 | eqtrd | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( X ( abs o. - ) 0 ) = ( abs ` X ) ) |
| 63 | elbl3 | |- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 0 e. CC /\ X e. CC ) ) -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) ) |
|
| 64 | 31 33 63 | mpanl12 | |- ( ( 0 e. CC /\ X e. CC ) -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) ) |
| 65 | 32 37 64 | sylancr | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) ) |
| 66 | 36 65 | mpbid | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( X ( abs o. - ) 0 ) < 1 ) |
| 67 | 62 66 | eqbrtrrd | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( abs ` X ) < 1 ) |
| 68 | 1 2 | abelthlem1 | |- ( ph -> 1 <_ sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) |
| 69 | 68 | adantr | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> 1 <_ sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) |
| 70 | 50 53 56 67 69 | xrltletrd | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( abs ` X ) < sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) |
| 71 | 41 47 48 37 70 | radcnvlt2 | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` X ) ) e. dom ~~> ) |
| 72 | 46 71 | eqeltrrd | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) e. dom ~~> ) |
| 73 | 30 72 | jaodan | |- ( ( ph /\ ( X e. { 1 } \/ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) e. dom ~~> ) |
| 74 | 12 73 | syldan | |- ( ( ph /\ X e. S ) -> seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) e. dom ~~> ) |