This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | ||
| abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | ||
| abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | ||
| Assertion | abelthlem3 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 2 | abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | |
| 3 | abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 4 | abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | |
| 5 | abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | |
| 6 | 1 2 3 4 5 | abelthlem2 | ⊢ ( 𝜑 → ( 1 ∈ 𝑆 ∧ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 7 | 6 | simprd | ⊢ ( 𝜑 → ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 8 | ssundif | ⊢ ( 𝑆 ⊆ ( { 1 } ∪ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ↔ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( 𝜑 → 𝑆 ⊆ ( { 1 } ∪ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 10 | 9 | sselda | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ ( { 1 } ∪ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 11 | elun | ⊢ ( 𝑋 ∈ ( { 1 } ∪ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ↔ ( 𝑋 ∈ { 1 } ∨ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) | |
| 12 | 10 11 | sylib | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ∈ { 1 } ∨ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 13 | 1 | feqmptd | ⊢ ( 𝜑 → 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ‘ 𝑛 ) ) ) |
| 14 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 15 | 14 | mulridd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · 1 ) = ( 𝐴 ‘ 𝑛 ) ) |
| 16 | 15 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ‘ 𝑛 ) ) ) |
| 17 | 13 16 | eqtr4d | ⊢ ( 𝜑 → 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) ) |
| 18 | elsni | ⊢ ( 𝑋 ∈ { 1 } → 𝑋 = 1 ) | |
| 19 | 18 | oveq1d | ⊢ ( 𝑋 ∈ { 1 } → ( 𝑋 ↑ 𝑛 ) = ( 1 ↑ 𝑛 ) ) |
| 20 | nn0z | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) | |
| 21 | 1exp | ⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) | |
| 22 | 20 21 | syl | ⊢ ( 𝑛 ∈ ℕ0 → ( 1 ↑ 𝑛 ) = 1 ) |
| 23 | 19 22 | sylan9eq | ⊢ ( ( 𝑋 ∈ { 1 } ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑛 ) = 1 ) |
| 24 | 23 | oveq2d | ⊢ ( ( 𝑋 ∈ { 1 } ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
| 25 | 24 | mpteq2dva | ⊢ ( 𝑋 ∈ { 1 } → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) ) |
| 26 | 25 | eqcomd | ⊢ ( 𝑋 ∈ { 1 } → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 27 | 17 26 | sylan9eq | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ { 1 } ) → 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 28 | 27 | seqeq3d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ { 1 } ) → seq 0 ( + , 𝐴 ) = seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 29 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ { 1 } ) → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
| 30 | 28 29 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ { 1 } ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
| 31 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 32 | 0cn | ⊢ 0 ∈ ℂ | |
| 33 | 1xr | ⊢ 1 ∈ ℝ* | |
| 34 | blssm | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ ) | |
| 35 | 31 32 33 34 | mp3an | ⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ |
| 36 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) | |
| 37 | 35 36 | sselid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → 𝑋 ∈ ℂ ) |
| 38 | oveq1 | ⊢ ( 𝑧 = 𝑋 → ( 𝑧 ↑ 𝑛 ) = ( 𝑋 ↑ 𝑛 ) ) | |
| 39 | 38 | oveq2d | ⊢ ( 𝑧 = 𝑋 → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 40 | 39 | mpteq2dv | ⊢ ( 𝑧 = 𝑋 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 41 | eqid | ⊢ ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) | |
| 42 | nn0ex | ⊢ ℕ0 ∈ V | |
| 43 | 42 | mptex | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ∈ V |
| 44 | 40 41 43 | fvmpt | ⊢ ( 𝑋 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑋 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 45 | 37 44 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑋 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 46 | 45 | seqeq3d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑋 ) ) = seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 47 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 48 | eqid | ⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 49 | 37 | abscld | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 50 | 49 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( abs ‘ 𝑋 ) ∈ ℝ* ) |
| 51 | 1re | ⊢ 1 ∈ ℝ | |
| 52 | rexr | ⊢ ( 1 ∈ ℝ → 1 ∈ ℝ* ) | |
| 53 | 51 52 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → 1 ∈ ℝ* ) |
| 54 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 55 | 41 47 48 | radcnvcl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 56 | 54 55 | sselid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
| 57 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 58 | 57 | cnmetdval | ⊢ ( ( 𝑋 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑋 − 0 ) ) ) |
| 59 | 37 32 58 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑋 − 0 ) ) ) |
| 60 | 37 | subid1d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 𝑋 − 0 ) = 𝑋 ) |
| 61 | 60 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( abs ‘ ( 𝑋 − 0 ) ) = ( abs ‘ 𝑋 ) ) |
| 62 | 59 61 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ 𝑋 ) ) |
| 63 | elbl3 | ⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℝ* ) ∧ ( 0 ∈ ℂ ∧ 𝑋 ∈ ℂ ) ) → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) | |
| 64 | 31 33 63 | mpanl12 | ⊢ ( ( 0 ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) |
| 65 | 32 37 64 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) |
| 66 | 36 65 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) |
| 67 | 62 66 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( abs ‘ 𝑋 ) < 1 ) |
| 68 | 1 2 | abelthlem1 | ⊢ ( 𝜑 → 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 69 | 68 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 70 | 50 53 56 67 69 | xrltletrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( abs ‘ 𝑋 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 71 | 41 47 48 37 70 | radcnvlt2 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑋 ) ) ∈ dom ⇝ ) |
| 72 | 46 71 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
| 73 | 30 72 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ { 1 } ∨ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
| 74 | 12 73 | syldan | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ∈ dom ⇝ ) |