This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If X is within the open disk of radius R centered at zero, then the infinite series converges at X . (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| radcnv.a | |- ( ph -> A : NN0 --> CC ) |
||
| radcnv.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
||
| radcnvlt.x | |- ( ph -> X e. CC ) |
||
| radcnvlt.a | |- ( ph -> ( abs ` X ) < R ) |
||
| Assertion | radcnvlt2 | |- ( ph -> seq 0 ( + , ( G ` X ) ) e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | radcnv.a | |- ( ph -> A : NN0 --> CC ) |
|
| 3 | radcnv.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
|
| 4 | radcnvlt.x | |- ( ph -> X e. CC ) |
|
| 5 | radcnvlt.a | |- ( ph -> ( abs ` X ) < R ) |
|
| 6 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 7 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 8 | 1 2 4 | psergf | |- ( ph -> ( G ` X ) : NN0 --> CC ) |
| 9 | fvco3 | |- ( ( ( G ` X ) : NN0 --> CC /\ k e. NN0 ) -> ( ( abs o. ( G ` X ) ) ` k ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
|
| 10 | 8 9 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( ( abs o. ( G ` X ) ) ` k ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
| 11 | 8 | ffvelcdmda | |- ( ( ph /\ k e. NN0 ) -> ( ( G ` X ) ` k ) e. CC ) |
| 12 | id | |- ( m = k -> m = k ) |
|
| 13 | 2fveq3 | |- ( m = k -> ( abs ` ( ( G ` X ) ` m ) ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
|
| 14 | 12 13 | oveq12d | |- ( m = k -> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) = ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
| 15 | 14 | cbvmptv | |- ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) = ( k e. NN0 |-> ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
| 16 | 1 2 3 4 5 15 | radcnvlt1 | |- ( ph -> ( seq 0 ( + , ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) |
| 17 | 16 | simprd | |- ( ph -> seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) |
| 18 | 6 7 10 11 17 | abscvgcvg | |- ( ph -> seq 0 ( + , ( G ` X ) ) e. dom ~~> ) |