This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric on the extended reals generates a topology, but this does not match the order topology on RR* ; for example { +oo } is open in the metric topology, but not the order topology. However, the metric topology is finer than the order topology, meaning that all open intervals are open in the metric topology. (Contributed by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xrsxmet.1 | ⊢ 𝐷 = ( dist ‘ ℝ*𝑠 ) | |
| xrsmopn.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| Assertion | xrsmopn | ⊢ ( ordTop ‘ ≤ ) ⊆ 𝐽 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrsxmet.1 | ⊢ 𝐷 = ( dist ‘ ℝ*𝑠 ) | |
| 2 | xrsmopn.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 3 | elssuni | ⊢ ( 𝑥 ∈ ( ordTop ‘ ≤ ) → 𝑥 ⊆ ∪ ( ordTop ‘ ≤ ) ) | |
| 4 | letopuni | ⊢ ℝ* = ∪ ( ordTop ‘ ≤ ) | |
| 5 | 3 4 | sseqtrrdi | ⊢ ( 𝑥 ∈ ( ordTop ‘ ≤ ) → 𝑥 ⊆ ℝ* ) |
| 6 | eqid | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 7 | 6 | rexmet | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) |
| 8 | letop | ⊢ ( ordTop ‘ ≤ ) ∈ Top | |
| 9 | reex | ⊢ ℝ ∈ V | |
| 10 | elrestr | ⊢ ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ ℝ ∈ V ∧ 𝑥 ∈ ( ordTop ‘ ≤ ) ) → ( 𝑥 ∩ ℝ ) ∈ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ) | |
| 11 | 8 9 10 | mp3an12 | ⊢ ( 𝑥 ∈ ( ordTop ‘ ≤ ) → ( 𝑥 ∩ ℝ ) ∈ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ) |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ∩ ℝ ) ∈ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ) |
| 13 | elin | ⊢ ( 𝑦 ∈ ( 𝑥 ∩ ℝ ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ℝ ) ) | |
| 14 | 13 | biimpri | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ( 𝑥 ∩ ℝ ) ) |
| 15 | 14 | adantll | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ( 𝑥 ∩ ℝ ) ) |
| 16 | eqid | ⊢ ( ( ordTop ‘ ≤ ) ↾t ℝ ) = ( ( ordTop ‘ ≤ ) ↾t ℝ ) | |
| 17 | 16 | xrtgioo | ⊢ ( topGen ‘ ran (,) ) = ( ( ordTop ‘ ≤ ) ↾t ℝ ) |
| 18 | eqid | ⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) | |
| 19 | 6 18 | tgioo | ⊢ ( topGen ‘ ran (,) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
| 20 | 17 19 | eqtr3i | ⊢ ( ( ordTop ‘ ≤ ) ↾t ℝ ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
| 21 | 20 | mopni2 | ⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ ( 𝑥 ∩ ℝ ) ∈ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ∧ 𝑦 ∈ ( 𝑥 ∩ ℝ ) ) → ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ ( 𝑥 ∩ ℝ ) ) |
| 22 | 7 12 15 21 | mp3an2i | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ ( 𝑥 ∩ ℝ ) ) |
| 23 | 1 | xrsxmet | ⊢ 𝐷 ∈ ( ∞Met ‘ ℝ* ) |
| 24 | simplr | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑦 ∈ ℝ ) | |
| 25 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 26 | sseqin2 | ⊢ ( ℝ ⊆ ℝ* ↔ ( ℝ* ∩ ℝ ) = ℝ ) | |
| 27 | 25 26 | mpbi | ⊢ ( ℝ* ∩ ℝ ) = ℝ |
| 28 | 24 27 | eleqtrrdi | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑦 ∈ ( ℝ* ∩ ℝ ) ) |
| 29 | rpxr | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) | |
| 30 | 29 | adantl | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ* ) |
| 31 | 1 | xrsdsre | ⊢ ( 𝐷 ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
| 32 | 31 | eqcomi | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( 𝐷 ↾ ( ℝ × ℝ ) ) |
| 33 | 32 | blres | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℝ* ) ∧ 𝑦 ∈ ( ℝ* ∩ ℝ ) ∧ 𝑟 ∈ ℝ* ) → ( 𝑦 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) = ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∩ ℝ ) ) |
| 34 | 23 28 30 33 | mp3an2i | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑦 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) = ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∩ ℝ ) ) |
| 35 | 1 | xrsblre | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ℝ ) |
| 36 | 29 35 | sylan2 | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ+ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ℝ ) |
| 37 | 36 | adantll | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ℝ ) |
| 38 | dfss2 | ⊢ ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ℝ ↔ ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∩ ℝ ) = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) | |
| 39 | 37 38 | sylib | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∩ ℝ ) = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 40 | 34 39 | eqtrd | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑦 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 41 | 40 | sseq1d | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑦 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ ( 𝑥 ∩ ℝ ) ↔ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑥 ∩ ℝ ) ) ) |
| 42 | inss1 | ⊢ ( 𝑥 ∩ ℝ ) ⊆ 𝑥 | |
| 43 | sstr | ⊢ ( ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑥 ∩ ℝ ) ∧ ( 𝑥 ∩ ℝ ) ⊆ 𝑥 ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) | |
| 44 | 42 43 | mpan2 | ⊢ ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑥 ∩ ℝ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) |
| 45 | 41 44 | biimtrdi | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑦 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ ( 𝑥 ∩ ℝ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) ) |
| 46 | 45 | reximdva | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ ( 𝑥 ∩ ℝ ) → ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) ) |
| 47 | 22 46 | mpd | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) |
| 48 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 49 | 5 | sselda | ⊢ ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ ℝ* ) |
| 50 | 49 | adantr | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ* ) |
| 51 | rpxr | ⊢ ( 1 ∈ ℝ+ → 1 ∈ ℝ* ) | |
| 52 | 48 51 | mp1i | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ) → 1 ∈ ℝ* ) |
| 53 | elbl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℝ* ) ∧ 𝑦 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 1 ) ↔ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ) | |
| 54 | 23 50 52 53 | mp3an2i | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 1 ) ↔ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ) |
| 55 | simp2 | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) → ¬ 𝑦 ∈ ℝ ) | |
| 56 | 49 | 3ad2ant1 | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) → 𝑦 ∈ ℝ* ) |
| 57 | 56 | adantr | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → 𝑦 ∈ ℝ* ) |
| 58 | simpl3l | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → 𝑧 ∈ ℝ* ) | |
| 59 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℝ* ) ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( 𝑦 𝐷 𝑧 ) ∈ ℝ* ) | |
| 60 | 23 57 58 59 | mp3an2i | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝑦 𝐷 𝑧 ) ∈ ℝ* ) |
| 61 | 1red | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → 1 ∈ ℝ ) | |
| 62 | xmetge0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℝ* ) ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → 0 ≤ ( 𝑦 𝐷 𝑧 ) ) | |
| 63 | 23 57 58 62 | mp3an2i | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → 0 ≤ ( 𝑦 𝐷 𝑧 ) ) |
| 64 | simpl3r | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝑦 𝐷 𝑧 ) < 1 ) | |
| 65 | 1xr | ⊢ 1 ∈ ℝ* | |
| 66 | xrltle | ⊢ ( ( ( 𝑦 𝐷 𝑧 ) ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( 𝑦 𝐷 𝑧 ) < 1 → ( 𝑦 𝐷 𝑧 ) ≤ 1 ) ) | |
| 67 | 60 65 66 | sylancl | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( ( 𝑦 𝐷 𝑧 ) < 1 → ( 𝑦 𝐷 𝑧 ) ≤ 1 ) ) |
| 68 | 64 67 | mpd | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝑦 𝐷 𝑧 ) ≤ 1 ) |
| 69 | xrrege0 | ⊢ ( ( ( ( 𝑦 𝐷 𝑧 ) ∈ ℝ* ∧ 1 ∈ ℝ ) ∧ ( 0 ≤ ( 𝑦 𝐷 𝑧 ) ∧ ( 𝑦 𝐷 𝑧 ) ≤ 1 ) ) → ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) | |
| 70 | 60 61 63 68 69 | syl22anc | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) |
| 71 | simpr | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → 𝑦 ≠ 𝑧 ) | |
| 72 | 1 | xrsdsreclb | ⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ∧ 𝑦 ≠ 𝑧 ) → ( ( 𝑦 𝐷 𝑧 ) ∈ ℝ ↔ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ) |
| 73 | 57 58 71 72 | syl3anc | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( ( 𝑦 𝐷 𝑧 ) ∈ ℝ ↔ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ) |
| 74 | 70 73 | mpbid | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) |
| 75 | 74 | simpld | ⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → 𝑦 ∈ ℝ ) |
| 76 | 75 | ex | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) → ( 𝑦 ≠ 𝑧 → 𝑦 ∈ ℝ ) ) |
| 77 | 76 | necon1bd | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) → ( ¬ 𝑦 ∈ ℝ → 𝑦 = 𝑧 ) ) |
| 78 | simp1r | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) → 𝑦 ∈ 𝑥 ) | |
| 79 | elequ1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) | |
| 80 | 78 79 | syl5ibcom | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) → ( 𝑦 = 𝑧 → 𝑧 ∈ 𝑥 ) ) |
| 81 | 77 80 | syld | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) → ( ¬ 𝑦 ∈ ℝ → 𝑧 ∈ 𝑥 ) ) |
| 82 | 55 81 | mpd | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) → 𝑧 ∈ 𝑥 ) |
| 83 | 82 | 3expia | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ) → ( ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) → 𝑧 ∈ 𝑥 ) ) |
| 84 | 54 83 | sylbid | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 1 ) → 𝑧 ∈ 𝑥 ) ) |
| 85 | 84 | ssrdv | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ) → ( 𝑦 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑥 ) |
| 86 | oveq2 | ⊢ ( 𝑟 = 1 → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ( 𝑦 ( ball ‘ 𝐷 ) 1 ) ) | |
| 87 | 86 | sseq1d | ⊢ ( 𝑟 = 1 → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ( 𝑦 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑥 ) ) |
| 88 | 87 | rspcev | ⊢ ( ( 1 ∈ ℝ+ ∧ ( 𝑦 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑥 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) |
| 89 | 48 85 88 | sylancr | ⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ) → ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) |
| 90 | 47 89 | pm2.61dan | ⊢ ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) |
| 91 | 90 | ralrimiva | ⊢ ( 𝑥 ∈ ( ordTop ‘ ≤ ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) |
| 92 | 2 | elmopn2 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ ℝ* ) → ( 𝑥 ∈ 𝐽 ↔ ( 𝑥 ⊆ ℝ* ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) ) ) |
| 93 | 23 92 | ax-mp | ⊢ ( 𝑥 ∈ 𝐽 ↔ ( 𝑥 ⊆ ℝ* ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) ) |
| 94 | 5 91 93 | sylanbrc | ⊢ ( 𝑥 ∈ ( ordTop ‘ ≤ ) → 𝑥 ∈ 𝐽 ) |
| 95 | 94 | ssriv | ⊢ ( ordTop ‘ ≤ ) ⊆ 𝐽 |