This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any ball of the metric of the extended reals centered on an element of RR is entirely contained in RR . (Contributed by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrsxmet.1 | ⊢ 𝐷 = ( dist ‘ ℝ*𝑠 ) | |
| Assertion | xrsblre | ⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrsxmet.1 | ⊢ 𝐷 = ( dist ‘ ℝ*𝑠 ) | |
| 2 | rexr | ⊢ ( 𝑃 ∈ ℝ → 𝑃 ∈ ℝ* ) | |
| 3 | 1 | xrsxmet | ⊢ 𝐷 ∈ ( ∞Met ‘ ℝ* ) |
| 4 | eqid | ⊢ ( ◡ 𝐷 “ ℝ ) = ( ◡ 𝐷 “ ℝ ) | |
| 5 | 4 | blssec | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℝ* ) ∧ 𝑃 ∈ ℝ* ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ) |
| 6 | 3 5 | mp3an1 | ⊢ ( ( 𝑃 ∈ ℝ* ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ) |
| 7 | 2 6 | sylan | ⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ) |
| 8 | vex | ⊢ 𝑥 ∈ V | |
| 9 | simpl | ⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → 𝑃 ∈ ℝ ) | |
| 10 | elecg | ⊢ ( ( 𝑥 ∈ V ∧ 𝑃 ∈ ℝ ) → ( 𝑥 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ↔ 𝑃 ( ◡ 𝐷 “ ℝ ) 𝑥 ) ) | |
| 11 | 8 9 10 | sylancr | ⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( 𝑥 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ↔ 𝑃 ( ◡ 𝐷 “ ℝ ) 𝑥 ) ) |
| 12 | 4 | xmeterval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ ℝ* ) → ( 𝑃 ( ◡ 𝐷 “ ℝ ) 𝑥 ↔ ( 𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ) |
| 13 | 3 12 | ax-mp | ⊢ ( 𝑃 ( ◡ 𝐷 “ ℝ ) 𝑥 ↔ ( 𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) |
| 14 | simpr | ⊢ ( ( ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ∧ 𝑃 = 𝑥 ) → 𝑃 = 𝑥 ) | |
| 15 | simplll | ⊢ ( ( ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ∧ 𝑃 = 𝑥 ) → 𝑃 ∈ ℝ ) | |
| 16 | 14 15 | eqeltrrd | ⊢ ( ( ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ∧ 𝑃 = 𝑥 ) → 𝑥 ∈ ℝ ) |
| 17 | simplr3 | ⊢ ( ( ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ∧ 𝑃 ≠ 𝑥 ) → ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) | |
| 18 | simplr1 | ⊢ ( ( ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ∧ 𝑃 ≠ 𝑥 ) → 𝑃 ∈ ℝ* ) | |
| 19 | simplr2 | ⊢ ( ( ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ∧ 𝑃 ≠ 𝑥 ) → 𝑥 ∈ ℝ* ) | |
| 20 | simpr | ⊢ ( ( ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ∧ 𝑃 ≠ 𝑥 ) → 𝑃 ≠ 𝑥 ) | |
| 21 | 1 | xrsdsreclb | ⊢ ( ( 𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝑃 ≠ 𝑥 ) → ( ( 𝑃 𝐷 𝑥 ) ∈ ℝ ↔ ( 𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ ) ) ) |
| 22 | 18 19 20 21 | syl3anc | ⊢ ( ( ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ∧ 𝑃 ≠ 𝑥 ) → ( ( 𝑃 𝐷 𝑥 ) ∈ ℝ ↔ ( 𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ ) ) ) |
| 23 | 17 22 | mpbid | ⊢ ( ( ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ∧ 𝑃 ≠ 𝑥 ) → ( 𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ ) ) |
| 24 | 23 | simprd | ⊢ ( ( ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ∧ 𝑃 ≠ 𝑥 ) → 𝑥 ∈ ℝ ) |
| 25 | 16 24 | pm2.61dane | ⊢ ( ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) → 𝑥 ∈ ℝ ) |
| 26 | 25 | ex | ⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( ( 𝑃 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) → 𝑥 ∈ ℝ ) ) |
| 27 | 13 26 | biimtrid | ⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ◡ 𝐷 “ ℝ ) 𝑥 → 𝑥 ∈ ℝ ) ) |
| 28 | 11 27 | sylbid | ⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( 𝑥 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) → 𝑥 ∈ ℝ ) ) |
| 29 | 28 | ssrdv | ⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ⊆ ℝ ) |
| 30 | 7 29 | sstrd | ⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ ℝ ) |