This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric on the extended reals coincides with the usual metric on the reals. (Contributed by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrsxmet.1 | ⊢ 𝐷 = ( dist ‘ ℝ*𝑠 ) | |
| Assertion | xrsdsre | ⊢ ( 𝐷 ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrsxmet.1 | ⊢ 𝐷 = ( dist ‘ ℝ*𝑠 ) | |
| 2 | 1 | xrsdsreval | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 𝐷 𝑦 ) = ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
| 3 | ovres | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ( 𝐷 ↾ ( ℝ × ℝ ) ) 𝑦 ) = ( 𝑥 𝐷 𝑦 ) ) | |
| 4 | eqid | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 5 | 4 | remetdval | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) 𝑦 ) = ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
| 6 | 2 3 5 | 3eqtr4d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ( 𝐷 ↾ ( ℝ × ℝ ) ) 𝑦 ) = ( 𝑥 ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) 𝑦 ) ) |
| 7 | 6 | rgen2 | ⊢ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑥 ( 𝐷 ↾ ( ℝ × ℝ ) ) 𝑦 ) = ( 𝑥 ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) 𝑦 ) |
| 8 | 1 | xrsxmet | ⊢ 𝐷 ∈ ( ∞Met ‘ ℝ* ) |
| 9 | xmetf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ ℝ* ) → 𝐷 : ( ℝ* × ℝ* ) ⟶ ℝ* ) | |
| 10 | ffn | ⊢ ( 𝐷 : ( ℝ* × ℝ* ) ⟶ ℝ* → 𝐷 Fn ( ℝ* × ℝ* ) ) | |
| 11 | 8 9 10 | mp2b | ⊢ 𝐷 Fn ( ℝ* × ℝ* ) |
| 12 | rexpssxrxp | ⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) | |
| 13 | fnssres | ⊢ ( ( 𝐷 Fn ( ℝ* × ℝ* ) ∧ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) ) → ( 𝐷 ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) ) | |
| 14 | 11 12 13 | mp2an | ⊢ ( 𝐷 ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) |
| 15 | cnmet | ⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) | |
| 16 | metf | ⊢ ( ( abs ∘ − ) ∈ ( Met ‘ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ) | |
| 17 | ffn | ⊢ ( ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ → ( abs ∘ − ) Fn ( ℂ × ℂ ) ) | |
| 18 | 15 16 17 | mp2b | ⊢ ( abs ∘ − ) Fn ( ℂ × ℂ ) |
| 19 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 20 | xpss12 | ⊢ ( ( ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( ℝ × ℝ ) ⊆ ( ℂ × ℂ ) ) | |
| 21 | 19 19 20 | mp2an | ⊢ ( ℝ × ℝ ) ⊆ ( ℂ × ℂ ) |
| 22 | fnssres | ⊢ ( ( ( abs ∘ − ) Fn ( ℂ × ℂ ) ∧ ( ℝ × ℝ ) ⊆ ( ℂ × ℂ ) ) → ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) ) | |
| 23 | 18 21 22 | mp2an | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) |
| 24 | eqfnov2 | ⊢ ( ( ( 𝐷 ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) ∧ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) ) → ( ( 𝐷 ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↔ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑥 ( 𝐷 ↾ ( ℝ × ℝ ) ) 𝑦 ) = ( 𝑥 ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) 𝑦 ) ) ) | |
| 25 | 14 23 24 | mp2an | ⊢ ( ( 𝐷 ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↔ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑥 ( 𝐷 ↾ ( ℝ × ℝ ) ) 𝑦 ) = ( 𝑥 ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) 𝑦 ) ) |
| 26 | 7 25 | mpbir | ⊢ ( 𝐷 ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |