This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integers are a closed set in the topology on RR . (Contributed by Mario Carneiro, 17-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zcld.1 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| Assertion | zcld | ⊢ ℤ ∈ ( Clsd ‘ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcld.1 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| 2 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ ℤ ( 𝑥 (,) ( 𝑥 + 1 ) ) ↔ ∃ 𝑥 ∈ ℤ 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) ) | |
| 3 | elioore | ⊢ ( 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) → 𝑦 ∈ ℝ ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) ) → 𝑦 ∈ ℝ ) |
| 5 | eliooord | ⊢ ( 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) → ( 𝑥 < 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ) | |
| 6 | btwnnz | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑥 < 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) → ¬ 𝑦 ∈ ℤ ) | |
| 7 | 6 | 3expb | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 < 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ) → ¬ 𝑦 ∈ ℤ ) |
| 8 | 5 7 | sylan2 | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) ) → ¬ 𝑦 ∈ ℤ ) |
| 9 | 4 8 | eldifd | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) ) → 𝑦 ∈ ( ℝ ∖ ℤ ) ) |
| 10 | 9 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ ℤ 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) → 𝑦 ∈ ( ℝ ∖ ℤ ) ) |
| 11 | eldifi | ⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → 𝑦 ∈ ℝ ) | |
| 12 | 11 | flcld | ⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( ⌊ ‘ 𝑦 ) ∈ ℤ ) |
| 13 | 12 | zred | ⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( ⌊ ‘ 𝑦 ) ∈ ℝ ) |
| 14 | flle | ⊢ ( 𝑦 ∈ ℝ → ( ⌊ ‘ 𝑦 ) ≤ 𝑦 ) | |
| 15 | 11 14 | syl | ⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( ⌊ ‘ 𝑦 ) ≤ 𝑦 ) |
| 16 | eldifn | ⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ¬ 𝑦 ∈ ℤ ) | |
| 17 | nelne2 | ⊢ ( ( ( ⌊ ‘ 𝑦 ) ∈ ℤ ∧ ¬ 𝑦 ∈ ℤ ) → ( ⌊ ‘ 𝑦 ) ≠ 𝑦 ) | |
| 18 | 12 16 17 | syl2anc | ⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( ⌊ ‘ 𝑦 ) ≠ 𝑦 ) |
| 19 | 18 | necomd | ⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → 𝑦 ≠ ( ⌊ ‘ 𝑦 ) ) |
| 20 | 13 11 15 19 | leneltd | ⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( ⌊ ‘ 𝑦 ) < 𝑦 ) |
| 21 | flltp1 | ⊢ ( 𝑦 ∈ ℝ → 𝑦 < ( ( ⌊ ‘ 𝑦 ) + 1 ) ) | |
| 22 | 11 21 | syl | ⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → 𝑦 < ( ( ⌊ ‘ 𝑦 ) + 1 ) ) |
| 23 | 13 | rexrd | ⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( ⌊ ‘ 𝑦 ) ∈ ℝ* ) |
| 24 | peano2re | ⊢ ( ( ⌊ ‘ 𝑦 ) ∈ ℝ → ( ( ⌊ ‘ 𝑦 ) + 1 ) ∈ ℝ ) | |
| 25 | 13 24 | syl | ⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( ( ⌊ ‘ 𝑦 ) + 1 ) ∈ ℝ ) |
| 26 | 25 | rexrd | ⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( ( ⌊ ‘ 𝑦 ) + 1 ) ∈ ℝ* ) |
| 27 | elioo2 | ⊢ ( ( ( ⌊ ‘ 𝑦 ) ∈ ℝ* ∧ ( ( ⌊ ‘ 𝑦 ) + 1 ) ∈ ℝ* ) → ( 𝑦 ∈ ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 ) + 1 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( ⌊ ‘ 𝑦 ) < 𝑦 ∧ 𝑦 < ( ( ⌊ ‘ 𝑦 ) + 1 ) ) ) ) | |
| 28 | 23 26 27 | syl2anc | ⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( 𝑦 ∈ ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 ) + 1 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( ⌊ ‘ 𝑦 ) < 𝑦 ∧ 𝑦 < ( ( ⌊ ‘ 𝑦 ) + 1 ) ) ) ) |
| 29 | 11 20 22 28 | mpbir3and | ⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → 𝑦 ∈ ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 ) + 1 ) ) ) |
| 30 | id | ⊢ ( 𝑥 = ( ⌊ ‘ 𝑦 ) → 𝑥 = ( ⌊ ‘ 𝑦 ) ) | |
| 31 | oveq1 | ⊢ ( 𝑥 = ( ⌊ ‘ 𝑦 ) → ( 𝑥 + 1 ) = ( ( ⌊ ‘ 𝑦 ) + 1 ) ) | |
| 32 | 30 31 | oveq12d | ⊢ ( 𝑥 = ( ⌊ ‘ 𝑦 ) → ( 𝑥 (,) ( 𝑥 + 1 ) ) = ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 ) + 1 ) ) ) |
| 33 | 32 | eleq2d | ⊢ ( 𝑥 = ( ⌊ ‘ 𝑦 ) → ( 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) ↔ 𝑦 ∈ ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 ) + 1 ) ) ) ) |
| 34 | 33 | rspcev | ⊢ ( ( ( ⌊ ‘ 𝑦 ) ∈ ℤ ∧ 𝑦 ∈ ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 ) + 1 ) ) ) → ∃ 𝑥 ∈ ℤ 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) ) |
| 35 | 12 29 34 | syl2anc | ⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ∃ 𝑥 ∈ ℤ 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) ) |
| 36 | 10 35 | impbii | ⊢ ( ∃ 𝑥 ∈ ℤ 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) ↔ 𝑦 ∈ ( ℝ ∖ ℤ ) ) |
| 37 | 2 36 | bitri | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ ℤ ( 𝑥 (,) ( 𝑥 + 1 ) ) ↔ 𝑦 ∈ ( ℝ ∖ ℤ ) ) |
| 38 | 37 | eqriv | ⊢ ∪ 𝑥 ∈ ℤ ( 𝑥 (,) ( 𝑥 + 1 ) ) = ( ℝ ∖ ℤ ) |
| 39 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 40 | 1 39 | eqeltri | ⊢ 𝐽 ∈ Top |
| 41 | iooretop | ⊢ ( 𝑥 (,) ( 𝑥 + 1 ) ) ∈ ( topGen ‘ ran (,) ) | |
| 42 | 41 1 | eleqtrri | ⊢ ( 𝑥 (,) ( 𝑥 + 1 ) ) ∈ 𝐽 |
| 43 | 42 | rgenw | ⊢ ∀ 𝑥 ∈ ℤ ( 𝑥 (,) ( 𝑥 + 1 ) ) ∈ 𝐽 |
| 44 | iunopn | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ ℤ ( 𝑥 (,) ( 𝑥 + 1 ) ) ∈ 𝐽 ) → ∪ 𝑥 ∈ ℤ ( 𝑥 (,) ( 𝑥 + 1 ) ) ∈ 𝐽 ) | |
| 45 | 40 43 44 | mp2an | ⊢ ∪ 𝑥 ∈ ℤ ( 𝑥 (,) ( 𝑥 + 1 ) ) ∈ 𝐽 |
| 46 | 38 45 | eqeltrri | ⊢ ( ℝ ∖ ℤ ) ∈ 𝐽 |
| 47 | zssre | ⊢ ℤ ⊆ ℝ | |
| 48 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 49 | 1 | unieqi | ⊢ ∪ 𝐽 = ∪ ( topGen ‘ ran (,) ) |
| 50 | 48 49 | eqtr4i | ⊢ ℝ = ∪ 𝐽 |
| 51 | 50 | iscld2 | ⊢ ( ( 𝐽 ∈ Top ∧ ℤ ⊆ ℝ ) → ( ℤ ∈ ( Clsd ‘ 𝐽 ) ↔ ( ℝ ∖ ℤ ) ∈ 𝐽 ) ) |
| 52 | 40 47 51 | mp2an | ⊢ ( ℤ ∈ ( Clsd ‘ 𝐽 ) ↔ ( ℝ ∖ ℤ ) ∈ 𝐽 ) |
| 53 | 46 52 | mpbir | ⊢ ℤ ∈ ( Clsd ‘ 𝐽 ) |