This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Exponential Law for topological spaces. The "currying" function F is a homeomorphism on function spaces when J and K are exponentiable spaces (by xkococn , it is sufficient to assume that J , K are locally compact to ensure exponentiability). (Contributed by Mario Carneiro, 13-Apr-2015) (Proof shortened by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xkohmeo.x | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| xkohmeo.y | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| xkohmeo.f | ⊢ 𝐹 = ( 𝑓 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝑓 𝑦 ) ) ) ) | ||
| xkohmeo.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑛-Locally Comp ) | ||
| xkohmeo.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑛-Locally Comp ) | ||
| xkohmeo.l | ⊢ ( 𝜑 → 𝐿 ∈ Top ) | ||
| Assertion | xkohmeo | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) Homeo ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkohmeo.x | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | xkohmeo.y | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | xkohmeo.f | ⊢ 𝐹 = ( 𝑓 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝑓 𝑦 ) ) ) ) | |
| 4 | xkohmeo.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑛-Locally Comp ) | |
| 5 | xkohmeo.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑛-Locally Comp ) | |
| 6 | xkohmeo.l | ⊢ ( 𝜑 → 𝐿 ∈ Top ) | |
| 7 | txtopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
| 8 | 1 2 7 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 9 | topontop | ⊢ ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ Top ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ Top ) |
| 11 | eqid | ⊢ ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) = ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) | |
| 12 | 11 | xkotopon | ⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ Top ∧ 𝐿 ∈ Top ) → ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ∈ ( TopOn ‘ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) ) |
| 13 | 10 6 12 | syl2anc | ⊢ ( 𝜑 → ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ∈ ( TopOn ‘ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) ) |
| 14 | vex | ⊢ 𝑓 ∈ V | |
| 15 | vex | ⊢ 𝑥 ∈ V | |
| 16 | 14 15 | op1std | ⊢ ( 𝑧 = 〈 𝑓 , 𝑥 〉 → ( 1st ‘ 𝑧 ) = 𝑓 ) |
| 17 | 14 15 | op2ndd | ⊢ ( 𝑧 = 〈 𝑓 , 𝑥 〉 → ( 2nd ‘ 𝑧 ) = 𝑥 ) |
| 18 | eqidd | ⊢ ( 𝑧 = 〈 𝑓 , 𝑥 〉 → 𝑦 = 𝑦 ) | |
| 19 | 16 17 18 | oveq123d | ⊢ ( 𝑧 = 〈 𝑓 , 𝑥 〉 → ( ( 2nd ‘ 𝑧 ) ( 1st ‘ 𝑧 ) 𝑦 ) = ( 𝑥 𝑓 𝑦 ) ) |
| 20 | 19 | mpteq2dv | ⊢ ( 𝑧 = 〈 𝑓 , 𝑥 〉 → ( 𝑦 ∈ 𝑌 ↦ ( ( 2nd ‘ 𝑧 ) ( 1st ‘ 𝑧 ) 𝑦 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝑓 𝑦 ) ) ) |
| 21 | 20 | mpompt | ⊢ ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 𝑦 ∈ 𝑌 ↦ ( ( 2nd ‘ 𝑧 ) ( 1st ‘ 𝑧 ) 𝑦 ) ) ) = ( 𝑓 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) , 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝑓 𝑦 ) ) ) |
| 22 | txtopon | ⊢ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ∈ ( TopOn ‘ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ∈ ( TopOn ‘ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ) ) | |
| 23 | 13 1 22 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ∈ ( TopOn ‘ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ) ) |
| 24 | vex | ⊢ 𝑧 ∈ V | |
| 25 | vex | ⊢ 𝑦 ∈ V | |
| 26 | 24 25 | op1std | ⊢ ( 𝑤 = 〈 𝑧 , 𝑦 〉 → ( 1st ‘ 𝑤 ) = 𝑧 ) |
| 27 | 26 | fveq2d | ⊢ ( 𝑤 = 〈 𝑧 , 𝑦 〉 → ( 1st ‘ ( 1st ‘ 𝑤 ) ) = ( 1st ‘ 𝑧 ) ) |
| 28 | 26 | fveq2d | ⊢ ( 𝑤 = 〈 𝑧 , 𝑦 〉 → ( 2nd ‘ ( 1st ‘ 𝑤 ) ) = ( 2nd ‘ 𝑧 ) ) |
| 29 | 24 25 | op2ndd | ⊢ ( 𝑤 = 〈 𝑧 , 𝑦 〉 → ( 2nd ‘ 𝑤 ) = 𝑦 ) |
| 30 | 27 28 29 | oveq123d | ⊢ ( 𝑤 = 〈 𝑧 , 𝑦 〉 → ( ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ( 1st ‘ ( 1st ‘ 𝑤 ) ) ( 2nd ‘ 𝑤 ) ) = ( ( 2nd ‘ 𝑧 ) ( 1st ‘ 𝑧 ) 𝑦 ) ) |
| 31 | 30 | mpompt | ⊢ ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ( 1st ‘ ( 1st ‘ 𝑤 ) ) ( 2nd ‘ 𝑤 ) ) ) = ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ ( ( 2nd ‘ 𝑧 ) ( 1st ‘ 𝑧 ) 𝑦 ) ) |
| 32 | txtopon | ⊢ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ∈ ( TopOn ‘ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) ∈ ( TopOn ‘ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ) ) | |
| 33 | 23 2 32 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) ∈ ( TopOn ‘ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ) ) |
| 34 | toptopon2 | ⊢ ( 𝐿 ∈ Top ↔ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) | |
| 35 | 6 34 | sylib | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
| 36 | txcmp | ⊢ ( ( 𝑥 ∈ Comp ∧ 𝑦 ∈ Comp ) → ( 𝑥 ×t 𝑦 ) ∈ Comp ) | |
| 37 | 36 | txnlly | ⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐾 ∈ 𝑛-Locally Comp ) → ( 𝐽 ×t 𝐾 ) ∈ 𝑛-Locally Comp ) |
| 38 | 4 5 37 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ 𝑛-Locally Comp ) |
| 39 | 27 | mpompt | ⊢ ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 1st ‘ ( 1st ‘ 𝑤 ) ) ) = ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ ( 1st ‘ 𝑧 ) ) |
| 40 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 41 | 35 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ) → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
| 42 | xp1st | ⊢ ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) → ( 1st ‘ 𝑤 ) ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ) | |
| 43 | 42 | adantl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ) → ( 1st ‘ 𝑤 ) ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ) |
| 44 | xp1st | ⊢ ( ( 1st ‘ 𝑤 ) ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) → ( 1st ‘ ( 1st ‘ 𝑤 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) | |
| 45 | 43 44 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ) → ( 1st ‘ ( 1st ‘ 𝑤 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) |
| 46 | cnf2 | ⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ∧ ( 1st ‘ ( 1st ‘ 𝑤 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) → ( 1st ‘ ( 1st ‘ 𝑤 ) ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐿 ) | |
| 47 | 40 41 45 46 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ) → ( 1st ‘ ( 1st ‘ 𝑤 ) ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐿 ) |
| 48 | 47 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ) → ( 1st ‘ ( 1st ‘ 𝑤 ) ) = ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ ( 1st ‘ 𝑤 ) ) ‘ 𝑢 ) ) ) |
| 49 | 48 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 1st ‘ ( 1st ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ ( 1st ‘ 𝑤 ) ) ‘ 𝑢 ) ) ) ) |
| 50 | 39 49 | eqtr3id | ⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ ( 1st ‘ 𝑧 ) ) = ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ ( 1st ‘ 𝑤 ) ) ‘ 𝑢 ) ) ) ) |
| 51 | 23 2 | cnmpt1st | ⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ 𝑧 ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ) ) |
| 52 | fveq2 | ⊢ ( 𝑡 = 𝑧 → ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑧 ) ) | |
| 53 | 52 | cbvmptv | ⊢ ( 𝑡 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 1st ‘ 𝑡 ) ) = ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 1st ‘ 𝑧 ) ) |
| 54 | 16 | mpompt | ⊢ ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 1st ‘ 𝑧 ) ) = ( 𝑓 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) , 𝑥 ∈ 𝑋 ↦ 𝑓 ) |
| 55 | 13 1 | cnmpt1st | ⊢ ( 𝜑 → ( 𝑓 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) , 𝑥 ∈ 𝑋 ↦ 𝑓 ) ∈ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) Cn ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ) ) |
| 56 | 54 55 | eqeltrid | ⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 1st ‘ 𝑧 ) ) ∈ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) Cn ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ) ) |
| 57 | 53 56 | eqeltrid | ⊢ ( 𝜑 → ( 𝑡 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 1st ‘ 𝑡 ) ) ∈ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) Cn ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ) ) |
| 58 | 23 2 51 23 57 52 | cnmpt21 | ⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ ( 1st ‘ 𝑧 ) ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ) ) |
| 59 | 50 58 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ ( 1st ‘ 𝑤 ) ) ‘ 𝑢 ) ) ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ) ) |
| 60 | 28 | mpompt | ⊢ ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ) = ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ ( 2nd ‘ 𝑧 ) ) |
| 61 | fveq2 | ⊢ ( 𝑡 = 𝑧 → ( 2nd ‘ 𝑡 ) = ( 2nd ‘ 𝑧 ) ) | |
| 62 | 61 | cbvmptv | ⊢ ( 𝑡 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 2nd ‘ 𝑡 ) ) = ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 2nd ‘ 𝑧 ) ) |
| 63 | 17 | mpompt | ⊢ ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 2nd ‘ 𝑧 ) ) = ( 𝑓 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) , 𝑥 ∈ 𝑋 ↦ 𝑥 ) |
| 64 | 13 1 | cnmpt2nd | ⊢ ( 𝜑 → ( 𝑓 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) , 𝑥 ∈ 𝑋 ↦ 𝑥 ) ∈ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) Cn 𝐽 ) ) |
| 65 | 63 64 | eqeltrid | ⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 2nd ‘ 𝑧 ) ) ∈ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) Cn 𝐽 ) ) |
| 66 | 62 65 | eqeltrid | ⊢ ( 𝜑 → ( 𝑡 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 2nd ‘ 𝑡 ) ) ∈ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) Cn 𝐽 ) ) |
| 67 | 23 2 51 23 66 61 | cnmpt21 | ⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ ( 2nd ‘ 𝑧 ) ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn 𝐽 ) ) |
| 68 | 60 67 | eqeltrid | ⊢ ( 𝜑 → ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn 𝐽 ) ) |
| 69 | 29 | mpompt | ⊢ ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 2nd ‘ 𝑤 ) ) = ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ 𝑦 ) |
| 70 | 23 2 | cnmpt2nd | ⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ 𝑦 ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn 𝐾 ) ) |
| 71 | 69 70 | eqeltrid | ⊢ ( 𝜑 → ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 2nd ‘ 𝑤 ) ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn 𝐾 ) ) |
| 72 | 33 68 71 | cnmpt1t | ⊢ ( 𝜑 → ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ 〈 ( 2nd ‘ ( 1st ‘ 𝑤 ) ) , ( 2nd ‘ 𝑤 ) 〉 ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn ( 𝐽 ×t 𝐾 ) ) ) |
| 73 | fveq2 | ⊢ ( 𝑢 = 〈 ( 2nd ‘ ( 1st ‘ 𝑤 ) ) , ( 2nd ‘ 𝑤 ) 〉 → ( ( 1st ‘ ( 1st ‘ 𝑤 ) ) ‘ 𝑢 ) = ( ( 1st ‘ ( 1st ‘ 𝑤 ) ) ‘ 〈 ( 2nd ‘ ( 1st ‘ 𝑤 ) ) , ( 2nd ‘ 𝑤 ) 〉 ) ) | |
| 74 | df-ov | ⊢ ( ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ( 1st ‘ ( 1st ‘ 𝑤 ) ) ( 2nd ‘ 𝑤 ) ) = ( ( 1st ‘ ( 1st ‘ 𝑤 ) ) ‘ 〈 ( 2nd ‘ ( 1st ‘ 𝑤 ) ) , ( 2nd ‘ 𝑤 ) 〉 ) | |
| 75 | 73 74 | eqtr4di | ⊢ ( 𝑢 = 〈 ( 2nd ‘ ( 1st ‘ 𝑤 ) ) , ( 2nd ‘ 𝑤 ) 〉 → ( ( 1st ‘ ( 1st ‘ 𝑤 ) ) ‘ 𝑢 ) = ( ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ( 1st ‘ ( 1st ‘ 𝑤 ) ) ( 2nd ‘ 𝑤 ) ) ) |
| 76 | 33 8 35 38 59 72 75 | cnmptk1p | ⊢ ( 𝜑 → ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ( 1st ‘ ( 1st ‘ 𝑤 ) ) ( 2nd ‘ 𝑤 ) ) ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn 𝐿 ) ) |
| 77 | 31 76 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ ( ( 2nd ‘ 𝑧 ) ( 1st ‘ 𝑧 ) 𝑦 ) ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn 𝐿 ) ) |
| 78 | 23 2 77 | cnmpt2k | ⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 𝑦 ∈ 𝑌 ↦ ( ( 2nd ‘ 𝑧 ) ( 1st ‘ 𝑧 ) 𝑦 ) ) ) ∈ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) Cn ( 𝐿 ↑ko 𝐾 ) ) ) |
| 79 | 21 78 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑓 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) , 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝑓 𝑦 ) ) ) ∈ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) Cn ( 𝐿 ↑ko 𝐾 ) ) ) |
| 80 | 13 1 79 | cnmpt2k | ⊢ ( 𝜑 → ( 𝑓 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝑓 𝑦 ) ) ) ) ∈ ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) Cn ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ) ) |
| 81 | 3 80 | eqeltrid | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) Cn ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ) ) |
| 82 | 1 2 3 4 5 6 | xkocnv | ⊢ ( 𝜑 → ◡ 𝐹 = ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ↦ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( ( 𝑔 ‘ 𝑥 ) ‘ 𝑦 ) ) ) ) |
| 83 | 15 25 | op1std | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑧 ) = 𝑥 ) |
| 84 | 83 | fveq2d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) = ( 𝑔 ‘ 𝑥 ) ) |
| 85 | 15 25 | op2ndd | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑧 ) = 𝑦 ) |
| 86 | 84 85 | fveq12d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) = ( ( 𝑔 ‘ 𝑥 ) ‘ 𝑦 ) ) |
| 87 | 86 | mpompt | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( ( 𝑔 ‘ 𝑥 ) ‘ 𝑦 ) ) |
| 88 | 87 | mpteq2i | ⊢ ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ↦ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) = ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ↦ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( ( 𝑔 ‘ 𝑥 ) ‘ 𝑦 ) ) ) |
| 89 | 82 88 | eqtr4di | ⊢ ( 𝜑 → ◡ 𝐹 = ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ↦ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) ) |
| 90 | nllytop | ⊢ ( 𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ Top ) | |
| 91 | 4 90 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 92 | nllytop | ⊢ ( 𝐾 ∈ 𝑛-Locally Comp → 𝐾 ∈ Top ) | |
| 93 | 5 92 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 94 | xkotop | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐿 ∈ Top ) → ( 𝐿 ↑ko 𝐾 ) ∈ Top ) | |
| 95 | 93 6 94 | syl2anc | ⊢ ( 𝜑 → ( 𝐿 ↑ko 𝐾 ) ∈ Top ) |
| 96 | eqid | ⊢ ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) = ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) | |
| 97 | 96 | xkotopon | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐿 ↑ko 𝐾 ) ∈ Top ) → ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ∈ ( TopOn ‘ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) ) |
| 98 | 91 95 97 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ∈ ( TopOn ‘ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) ) |
| 99 | vex | ⊢ 𝑔 ∈ V | |
| 100 | 99 24 | op1std | ⊢ ( 𝑤 = 〈 𝑔 , 𝑧 〉 → ( 1st ‘ 𝑤 ) = 𝑔 ) |
| 101 | 99 24 | op2ndd | ⊢ ( 𝑤 = 〈 𝑔 , 𝑧 〉 → ( 2nd ‘ 𝑤 ) = 𝑧 ) |
| 102 | 101 | fveq2d | ⊢ ( 𝑤 = 〈 𝑔 , 𝑧 〉 → ( 1st ‘ ( 2nd ‘ 𝑤 ) ) = ( 1st ‘ 𝑧 ) ) |
| 103 | 100 102 | fveq12d | ⊢ ( 𝑤 = 〈 𝑔 , 𝑧 〉 → ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) = ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ) |
| 104 | 101 | fveq2d | ⊢ ( 𝑤 = 〈 𝑔 , 𝑧 〉 → ( 2nd ‘ ( 2nd ‘ 𝑤 ) ) = ( 2nd ‘ 𝑧 ) ) |
| 105 | 103 104 | fveq12d | ⊢ ( 𝑤 = 〈 𝑔 , 𝑧 〉 → ( ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ‘ ( 2nd ‘ ( 2nd ‘ 𝑤 ) ) ) = ( ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) |
| 106 | 105 | mpompt | ⊢ ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ‘ ( 2nd ‘ ( 2nd ‘ 𝑤 ) ) ) ) = ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) |
| 107 | txtopon | ⊢ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ∈ ( TopOn ‘ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) ∧ ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) → ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) ∈ ( TopOn ‘ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) ) | |
| 108 | 98 8 107 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) ∈ ( TopOn ‘ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) ) |
| 109 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 110 | 35 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
| 111 | eqid | ⊢ ( 𝐿 ↑ko 𝐾 ) = ( 𝐿 ↑ko 𝐾 ) | |
| 112 | 111 | xkotopon | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐿 ∈ Top ) → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
| 113 | 93 6 112 | syl2anc | ⊢ ( 𝜑 → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
| 114 | xp1st | ⊢ ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) → ( 1st ‘ 𝑤 ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) | |
| 115 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ∧ ( 1st ‘ 𝑤 ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) → ( 1st ‘ 𝑤 ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) | |
| 116 | 1 113 114 115 | syl2an3an | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → ( 1st ‘ 𝑤 ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) |
| 117 | xp2nd | ⊢ ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) → ( 2nd ‘ 𝑤 ) ∈ ( 𝑋 × 𝑌 ) ) | |
| 118 | 117 | adantl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → ( 2nd ‘ 𝑤 ) ∈ ( 𝑋 × 𝑌 ) ) |
| 119 | xp1st | ⊢ ( ( 2nd ‘ 𝑤 ) ∈ ( 𝑋 × 𝑌 ) → ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ∈ 𝑋 ) | |
| 120 | 118 119 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ∈ 𝑋 ) |
| 121 | 116 120 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ∈ ( 𝐾 Cn 𝐿 ) ) |
| 122 | cnf2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ∧ ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ∈ ( 𝐾 Cn 𝐿 ) ) → ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) : 𝑌 ⟶ ∪ 𝐿 ) | |
| 123 | 109 110 121 122 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) : 𝑌 ⟶ ∪ 𝐿 ) |
| 124 | 123 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ‘ 𝑦 ) ) ) |
| 125 | 124 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ) = ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 𝑦 ∈ 𝑌 ↦ ( ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ‘ 𝑦 ) ) ) ) |
| 126 | 100 | mpompt | ⊢ ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 1st ‘ 𝑤 ) ) = ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 𝑔 ) |
| 127 | 116 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → ( 1st ‘ 𝑤 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ) ) |
| 128 | 127 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 1st ‘ 𝑤 ) ) = ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ) ) ) |
| 129 | 126 128 | eqtr3id | ⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 𝑔 ) = ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ) ) ) |
| 130 | 98 8 | cnmpt1st | ⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 𝑔 ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ) ) |
| 131 | 129 130 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ) ) |
| 132 | 102 | mpompt | ⊢ ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) = ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑧 ) ) |
| 133 | 98 8 | cnmpt2nd | ⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 𝑧 ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn ( 𝐽 ×t 𝐾 ) ) ) |
| 134 | 52 | cbvmptv | ⊢ ( 𝑡 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑡 ) ) = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑧 ) ) |
| 135 | 83 | mpompt | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑧 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑥 ) |
| 136 | 1 2 | cnmpt1st | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ) |
| 137 | 135 136 | eqeltrid | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑧 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ) |
| 138 | 134 137 | eqeltrid | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑡 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ) |
| 139 | 98 8 133 8 138 52 | cnmpt21 | ⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑧 ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn 𝐽 ) ) |
| 140 | 132 139 | eqeltrid | ⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn 𝐽 ) ) |
| 141 | fveq2 | ⊢ ( 𝑥 = ( 1st ‘ ( 2nd ‘ 𝑤 ) ) → ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ) | |
| 142 | 108 1 113 4 131 140 141 | cnmptk1p | ⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn ( 𝐿 ↑ko 𝐾 ) ) ) |
| 143 | 125 142 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 𝑦 ∈ 𝑌 ↦ ( ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ‘ 𝑦 ) ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn ( 𝐿 ↑ko 𝐾 ) ) ) |
| 144 | 104 | mpompt | ⊢ ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 2nd ‘ ( 2nd ‘ 𝑤 ) ) ) = ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑧 ) ) |
| 145 | 61 | cbvmptv | ⊢ ( 𝑡 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑡 ) ) = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑧 ) ) |
| 146 | 85 | mpompt | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑧 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑦 ) |
| 147 | 1 2 | cnmpt2nd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐾 ) ) |
| 148 | 146 147 | eqeltrid | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐾 ) ) |
| 149 | 145 148 | eqeltrid | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑡 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐾 ) ) |
| 150 | 98 8 133 8 149 61 | cnmpt21 | ⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑧 ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn 𝐾 ) ) |
| 151 | 144 150 | eqeltrid | ⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 2nd ‘ ( 2nd ‘ 𝑤 ) ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn 𝐾 ) ) |
| 152 | fveq2 | ⊢ ( 𝑦 = ( 2nd ‘ ( 2nd ‘ 𝑤 ) ) → ( ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ‘ 𝑦 ) = ( ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ‘ ( 2nd ‘ ( 2nd ‘ 𝑤 ) ) ) ) | |
| 153 | 108 2 35 5 143 151 152 | cnmptk1p | ⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ‘ ( 2nd ‘ ( 2nd ‘ 𝑤 ) ) ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn 𝐿 ) ) |
| 154 | 106 153 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn 𝐿 ) ) |
| 155 | 98 8 154 | cnmpt2k | ⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ↦ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) Cn ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ) ) |
| 156 | 89 155 | eqeltrd | ⊢ ( 𝜑 → ◡ 𝐹 ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) Cn ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ) ) |
| 157 | ishmeo | ⊢ ( 𝐹 ∈ ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) Homeo ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ) ↔ ( 𝐹 ∈ ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) Cn ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ) ∧ ◡ 𝐹 ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) Cn ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ) ) ) | |
| 158 | 81 156 157 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) Homeo ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ) ) |