This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The currying of a two-argument function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt2k.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmpt2k.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmpt2k.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) | ||
| Assertion | cnmpt2k | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt2k.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmpt2k.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | cnmpt2k.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 𝑌 | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 𝑣 | |
| 6 | nfmpo2 | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) | |
| 7 | nfcv | ⊢ Ⅎ 𝑥 𝑤 | |
| 8 | 5 6 7 | nfov | ⊢ Ⅎ 𝑥 ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) |
| 9 | 4 8 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑣 ∈ 𝑌 ↦ ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) |
| 10 | nfcv | ⊢ Ⅎ 𝑤 ( 𝑦 ∈ 𝑌 ↦ ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) | |
| 11 | nfcv | ⊢ Ⅎ 𝑦 𝑣 | |
| 12 | nfmpo1 | ⊢ Ⅎ 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) | |
| 13 | nfcv | ⊢ Ⅎ 𝑦 𝑤 | |
| 14 | 11 12 13 | nfov | ⊢ Ⅎ 𝑦 ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) |
| 15 | nfcv | ⊢ Ⅎ 𝑣 ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) | |
| 16 | oveq1 | ⊢ ( 𝑣 = 𝑦 → ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) = ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) | |
| 17 | 14 15 16 | cbvmpt | ⊢ ( 𝑣 ∈ 𝑌 ↦ ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) |
| 18 | oveq2 | ⊢ ( 𝑤 = 𝑥 → ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) = ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) | |
| 19 | 18 | mpteq2dv | ⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝑌 ↦ ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) ) |
| 20 | 17 19 | eqtrid | ⊢ ( 𝑤 = 𝑥 → ( 𝑣 ∈ 𝑌 ↦ ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) ) |
| 21 | 9 10 20 | cbvmpt | ⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑣 ∈ 𝑌 ↦ ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) ) |
| 22 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑌 ) | |
| 23 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) | |
| 24 | txtopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝐾 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝑌 × 𝑋 ) ) ) | |
| 25 | 2 1 24 | syl2anc | ⊢ ( 𝜑 → ( 𝐾 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝑌 × 𝑋 ) ) ) |
| 26 | cntop2 | ⊢ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) → 𝐿 ∈ Top ) | |
| 27 | 3 26 | syl | ⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 28 | toptopon2 | ⊢ ( 𝐿 ∈ Top ↔ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) | |
| 29 | 27 28 | sylib | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
| 30 | 1 2 3 | cnmptcom | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐿 ) ) |
| 31 | cnf2 | ⊢ ( ( ( 𝐾 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝑌 × 𝑋 ) ) ∧ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ∧ ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐿 ) ) → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) : ( 𝑌 × 𝑋 ) ⟶ ∪ 𝐿 ) | |
| 32 | 25 29 30 31 | syl3anc | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) : ( 𝑌 × 𝑋 ) ⟶ ∪ 𝐿 ) |
| 33 | eqid | ⊢ ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) | |
| 34 | 33 | fmpo | ⊢ ( ∀ 𝑦 ∈ 𝑌 ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ 𝐿 ↔ ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) : ( 𝑌 × 𝑋 ) ⟶ ∪ 𝐿 ) |
| 35 | 32 34 | sylibr | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑌 ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ 𝐿 ) |
| 36 | 35 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ 𝐿 ) |
| 37 | 36 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ∪ 𝐿 ) |
| 38 | 37 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ ∪ 𝐿 ) |
| 39 | 33 | ovmpt4g | ⊢ ( ( 𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ∪ 𝐿 ) → ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) = 𝐴 ) |
| 40 | 22 23 38 39 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) = 𝐴 ) |
| 41 | 40 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) |
| 42 | 41 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ) |
| 43 | 21 42 | eqtrid | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝑋 ↦ ( 𝑣 ∈ 𝑌 ↦ ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ) |
| 44 | eqid | ⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑣 ∈ 𝑌 ↦ 〈 𝑣 , 𝑤 〉 ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑣 ∈ 𝑌 ↦ 〈 𝑣 , 𝑤 〉 ) ) | |
| 45 | 44 | xkoinjcn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑤 ∈ 𝑋 ↦ ( 𝑣 ∈ 𝑌 ↦ 〈 𝑣 , 𝑤 〉 ) ) ∈ ( 𝐽 Cn ( ( 𝐾 ×t 𝐽 ) ↑ko 𝐾 ) ) ) |
| 46 | 1 2 45 | syl2anc | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝑋 ↦ ( 𝑣 ∈ 𝑌 ↦ 〈 𝑣 , 𝑤 〉 ) ) ∈ ( 𝐽 Cn ( ( 𝐾 ×t 𝐽 ) ↑ko 𝐾 ) ) ) |
| 47 | 32 | feqmptd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑧 ∈ ( 𝑌 × 𝑋 ) ↦ ( ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑧 ) ) ) |
| 48 | 47 30 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑌 × 𝑋 ) ↦ ( ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑧 ) ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐿 ) ) |
| 49 | fveq2 | ⊢ ( 𝑧 = 〈 𝑣 , 𝑤 〉 → ( ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑧 ) = ( ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 〈 𝑣 , 𝑤 〉 ) ) | |
| 50 | df-ov | ⊢ ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) = ( ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 〈 𝑣 , 𝑤 〉 ) | |
| 51 | 49 50 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑣 , 𝑤 〉 → ( ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑧 ) = ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) |
| 52 | 1 2 25 46 48 51 | cnmptk1 | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝑋 ↦ ( 𝑣 ∈ 𝑌 ↦ ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) |
| 53 | 43 52 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) |