This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Exponential Law for topological spaces. The "currying" function F is a homeomorphism on function spaces when J and K are exponentiable spaces (by xkococn , it is sufficient to assume that J , K are locally compact to ensure exponentiability). (Contributed by Mario Carneiro, 13-Apr-2015) (Proof shortened by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xkohmeo.x | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| xkohmeo.y | |- ( ph -> K e. ( TopOn ` Y ) ) |
||
| xkohmeo.f | |- F = ( f e. ( ( J tX K ) Cn L ) |-> ( x e. X |-> ( y e. Y |-> ( x f y ) ) ) ) |
||
| xkohmeo.j | |- ( ph -> J e. N-Locally Comp ) |
||
| xkohmeo.k | |- ( ph -> K e. N-Locally Comp ) |
||
| xkohmeo.l | |- ( ph -> L e. Top ) |
||
| Assertion | xkohmeo | |- ( ph -> F e. ( ( L ^ko ( J tX K ) ) Homeo ( ( L ^ko K ) ^ko J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkohmeo.x | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 2 | xkohmeo.y | |- ( ph -> K e. ( TopOn ` Y ) ) |
|
| 3 | xkohmeo.f | |- F = ( f e. ( ( J tX K ) Cn L ) |-> ( x e. X |-> ( y e. Y |-> ( x f y ) ) ) ) |
|
| 4 | xkohmeo.j | |- ( ph -> J e. N-Locally Comp ) |
|
| 5 | xkohmeo.k | |- ( ph -> K e. N-Locally Comp ) |
|
| 6 | xkohmeo.l | |- ( ph -> L e. Top ) |
|
| 7 | txtopon | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) -> ( J tX K ) e. ( TopOn ` ( X X. Y ) ) ) |
|
| 8 | 1 2 7 | syl2anc | |- ( ph -> ( J tX K ) e. ( TopOn ` ( X X. Y ) ) ) |
| 9 | topontop | |- ( ( J tX K ) e. ( TopOn ` ( X X. Y ) ) -> ( J tX K ) e. Top ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( J tX K ) e. Top ) |
| 11 | eqid | |- ( L ^ko ( J tX K ) ) = ( L ^ko ( J tX K ) ) |
|
| 12 | 11 | xkotopon | |- ( ( ( J tX K ) e. Top /\ L e. Top ) -> ( L ^ko ( J tX K ) ) e. ( TopOn ` ( ( J tX K ) Cn L ) ) ) |
| 13 | 10 6 12 | syl2anc | |- ( ph -> ( L ^ko ( J tX K ) ) e. ( TopOn ` ( ( J tX K ) Cn L ) ) ) |
| 14 | vex | |- f e. _V |
|
| 15 | vex | |- x e. _V |
|
| 16 | 14 15 | op1std | |- ( z = <. f , x >. -> ( 1st ` z ) = f ) |
| 17 | 14 15 | op2ndd | |- ( z = <. f , x >. -> ( 2nd ` z ) = x ) |
| 18 | eqidd | |- ( z = <. f , x >. -> y = y ) |
|
| 19 | 16 17 18 | oveq123d | |- ( z = <. f , x >. -> ( ( 2nd ` z ) ( 1st ` z ) y ) = ( x f y ) ) |
| 20 | 19 | mpteq2dv | |- ( z = <. f , x >. -> ( y e. Y |-> ( ( 2nd ` z ) ( 1st ` z ) y ) ) = ( y e. Y |-> ( x f y ) ) ) |
| 21 | 20 | mpompt | |- ( z e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( y e. Y |-> ( ( 2nd ` z ) ( 1st ` z ) y ) ) ) = ( f e. ( ( J tX K ) Cn L ) , x e. X |-> ( y e. Y |-> ( x f y ) ) ) |
| 22 | txtopon | |- ( ( ( L ^ko ( J tX K ) ) e. ( TopOn ` ( ( J tX K ) Cn L ) ) /\ J e. ( TopOn ` X ) ) -> ( ( L ^ko ( J tX K ) ) tX J ) e. ( TopOn ` ( ( ( J tX K ) Cn L ) X. X ) ) ) |
|
| 23 | 13 1 22 | syl2anc | |- ( ph -> ( ( L ^ko ( J tX K ) ) tX J ) e. ( TopOn ` ( ( ( J tX K ) Cn L ) X. X ) ) ) |
| 24 | vex | |- z e. _V |
|
| 25 | vex | |- y e. _V |
|
| 26 | 24 25 | op1std | |- ( w = <. z , y >. -> ( 1st ` w ) = z ) |
| 27 | 26 | fveq2d | |- ( w = <. z , y >. -> ( 1st ` ( 1st ` w ) ) = ( 1st ` z ) ) |
| 28 | 26 | fveq2d | |- ( w = <. z , y >. -> ( 2nd ` ( 1st ` w ) ) = ( 2nd ` z ) ) |
| 29 | 24 25 | op2ndd | |- ( w = <. z , y >. -> ( 2nd ` w ) = y ) |
| 30 | 27 28 29 | oveq123d | |- ( w = <. z , y >. -> ( ( 2nd ` ( 1st ` w ) ) ( 1st ` ( 1st ` w ) ) ( 2nd ` w ) ) = ( ( 2nd ` z ) ( 1st ` z ) y ) ) |
| 31 | 30 | mpompt | |- ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( ( 2nd ` ( 1st ` w ) ) ( 1st ` ( 1st ` w ) ) ( 2nd ` w ) ) ) = ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> ( ( 2nd ` z ) ( 1st ` z ) y ) ) |
| 32 | txtopon | |- ( ( ( ( L ^ko ( J tX K ) ) tX J ) e. ( TopOn ` ( ( ( J tX K ) Cn L ) X. X ) ) /\ K e. ( TopOn ` Y ) ) -> ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) e. ( TopOn ` ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) ) ) |
|
| 33 | 23 2 32 | syl2anc | |- ( ph -> ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) e. ( TopOn ` ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) ) ) |
| 34 | toptopon2 | |- ( L e. Top <-> L e. ( TopOn ` U. L ) ) |
|
| 35 | 6 34 | sylib | |- ( ph -> L e. ( TopOn ` U. L ) ) |
| 36 | txcmp | |- ( ( x e. Comp /\ y e. Comp ) -> ( x tX y ) e. Comp ) |
|
| 37 | 36 | txnlly | |- ( ( J e. N-Locally Comp /\ K e. N-Locally Comp ) -> ( J tX K ) e. N-Locally Comp ) |
| 38 | 4 5 37 | syl2anc | |- ( ph -> ( J tX K ) e. N-Locally Comp ) |
| 39 | 27 | mpompt | |- ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( 1st ` ( 1st ` w ) ) ) = ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> ( 1st ` z ) ) |
| 40 | 8 | adantr | |- ( ( ph /\ w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) ) -> ( J tX K ) e. ( TopOn ` ( X X. Y ) ) ) |
| 41 | 35 | adantr | |- ( ( ph /\ w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) ) -> L e. ( TopOn ` U. L ) ) |
| 42 | xp1st | |- ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) -> ( 1st ` w ) e. ( ( ( J tX K ) Cn L ) X. X ) ) |
|
| 43 | 42 | adantl | |- ( ( ph /\ w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) ) -> ( 1st ` w ) e. ( ( ( J tX K ) Cn L ) X. X ) ) |
| 44 | xp1st | |- ( ( 1st ` w ) e. ( ( ( J tX K ) Cn L ) X. X ) -> ( 1st ` ( 1st ` w ) ) e. ( ( J tX K ) Cn L ) ) |
|
| 45 | 43 44 | syl | |- ( ( ph /\ w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) ) -> ( 1st ` ( 1st ` w ) ) e. ( ( J tX K ) Cn L ) ) |
| 46 | cnf2 | |- ( ( ( J tX K ) e. ( TopOn ` ( X X. Y ) ) /\ L e. ( TopOn ` U. L ) /\ ( 1st ` ( 1st ` w ) ) e. ( ( J tX K ) Cn L ) ) -> ( 1st ` ( 1st ` w ) ) : ( X X. Y ) --> U. L ) |
|
| 47 | 40 41 45 46 | syl3anc | |- ( ( ph /\ w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) ) -> ( 1st ` ( 1st ` w ) ) : ( X X. Y ) --> U. L ) |
| 48 | 47 | feqmptd | |- ( ( ph /\ w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) ) -> ( 1st ` ( 1st ` w ) ) = ( u e. ( X X. Y ) |-> ( ( 1st ` ( 1st ` w ) ) ` u ) ) ) |
| 49 | 48 | mpteq2dva | |- ( ph -> ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( 1st ` ( 1st ` w ) ) ) = ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( u e. ( X X. Y ) |-> ( ( 1st ` ( 1st ` w ) ) ` u ) ) ) ) |
| 50 | 39 49 | eqtr3id | |- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> ( 1st ` z ) ) = ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( u e. ( X X. Y ) |-> ( ( 1st ` ( 1st ` w ) ) ` u ) ) ) ) |
| 51 | 23 2 | cnmpt1st | |- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> z ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn ( ( L ^ko ( J tX K ) ) tX J ) ) ) |
| 52 | fveq2 | |- ( t = z -> ( 1st ` t ) = ( 1st ` z ) ) |
|
| 53 | 52 | cbvmptv | |- ( t e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 1st ` t ) ) = ( z e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 1st ` z ) ) |
| 54 | 16 | mpompt | |- ( z e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 1st ` z ) ) = ( f e. ( ( J tX K ) Cn L ) , x e. X |-> f ) |
| 55 | 13 1 | cnmpt1st | |- ( ph -> ( f e. ( ( J tX K ) Cn L ) , x e. X |-> f ) e. ( ( ( L ^ko ( J tX K ) ) tX J ) Cn ( L ^ko ( J tX K ) ) ) ) |
| 56 | 54 55 | eqeltrid | |- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 1st ` z ) ) e. ( ( ( L ^ko ( J tX K ) ) tX J ) Cn ( L ^ko ( J tX K ) ) ) ) |
| 57 | 53 56 | eqeltrid | |- ( ph -> ( t e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 1st ` t ) ) e. ( ( ( L ^ko ( J tX K ) ) tX J ) Cn ( L ^ko ( J tX K ) ) ) ) |
| 58 | 23 2 51 23 57 52 | cnmpt21 | |- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> ( 1st ` z ) ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn ( L ^ko ( J tX K ) ) ) ) |
| 59 | 50 58 | eqeltrrd | |- ( ph -> ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( u e. ( X X. Y ) |-> ( ( 1st ` ( 1st ` w ) ) ` u ) ) ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn ( L ^ko ( J tX K ) ) ) ) |
| 60 | 28 | mpompt | |- ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( 2nd ` ( 1st ` w ) ) ) = ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> ( 2nd ` z ) ) |
| 61 | fveq2 | |- ( t = z -> ( 2nd ` t ) = ( 2nd ` z ) ) |
|
| 62 | 61 | cbvmptv | |- ( t e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 2nd ` t ) ) = ( z e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 2nd ` z ) ) |
| 63 | 17 | mpompt | |- ( z e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 2nd ` z ) ) = ( f e. ( ( J tX K ) Cn L ) , x e. X |-> x ) |
| 64 | 13 1 | cnmpt2nd | |- ( ph -> ( f e. ( ( J tX K ) Cn L ) , x e. X |-> x ) e. ( ( ( L ^ko ( J tX K ) ) tX J ) Cn J ) ) |
| 65 | 63 64 | eqeltrid | |- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 2nd ` z ) ) e. ( ( ( L ^ko ( J tX K ) ) tX J ) Cn J ) ) |
| 66 | 62 65 | eqeltrid | |- ( ph -> ( t e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 2nd ` t ) ) e. ( ( ( L ^ko ( J tX K ) ) tX J ) Cn J ) ) |
| 67 | 23 2 51 23 66 61 | cnmpt21 | |- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> ( 2nd ` z ) ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn J ) ) |
| 68 | 60 67 | eqeltrid | |- ( ph -> ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( 2nd ` ( 1st ` w ) ) ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn J ) ) |
| 69 | 29 | mpompt | |- ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( 2nd ` w ) ) = ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> y ) |
| 70 | 23 2 | cnmpt2nd | |- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> y ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn K ) ) |
| 71 | 69 70 | eqeltrid | |- ( ph -> ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( 2nd ` w ) ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn K ) ) |
| 72 | 33 68 71 | cnmpt1t | |- ( ph -> ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> <. ( 2nd ` ( 1st ` w ) ) , ( 2nd ` w ) >. ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn ( J tX K ) ) ) |
| 73 | fveq2 | |- ( u = <. ( 2nd ` ( 1st ` w ) ) , ( 2nd ` w ) >. -> ( ( 1st ` ( 1st ` w ) ) ` u ) = ( ( 1st ` ( 1st ` w ) ) ` <. ( 2nd ` ( 1st ` w ) ) , ( 2nd ` w ) >. ) ) |
|
| 74 | df-ov | |- ( ( 2nd ` ( 1st ` w ) ) ( 1st ` ( 1st ` w ) ) ( 2nd ` w ) ) = ( ( 1st ` ( 1st ` w ) ) ` <. ( 2nd ` ( 1st ` w ) ) , ( 2nd ` w ) >. ) |
|
| 75 | 73 74 | eqtr4di | |- ( u = <. ( 2nd ` ( 1st ` w ) ) , ( 2nd ` w ) >. -> ( ( 1st ` ( 1st ` w ) ) ` u ) = ( ( 2nd ` ( 1st ` w ) ) ( 1st ` ( 1st ` w ) ) ( 2nd ` w ) ) ) |
| 76 | 33 8 35 38 59 72 75 | cnmptk1p | |- ( ph -> ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( ( 2nd ` ( 1st ` w ) ) ( 1st ` ( 1st ` w ) ) ( 2nd ` w ) ) ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn L ) ) |
| 77 | 31 76 | eqeltrrid | |- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> ( ( 2nd ` z ) ( 1st ` z ) y ) ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn L ) ) |
| 78 | 23 2 77 | cnmpt2k | |- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( y e. Y |-> ( ( 2nd ` z ) ( 1st ` z ) y ) ) ) e. ( ( ( L ^ko ( J tX K ) ) tX J ) Cn ( L ^ko K ) ) ) |
| 79 | 21 78 | eqeltrrid | |- ( ph -> ( f e. ( ( J tX K ) Cn L ) , x e. X |-> ( y e. Y |-> ( x f y ) ) ) e. ( ( ( L ^ko ( J tX K ) ) tX J ) Cn ( L ^ko K ) ) ) |
| 80 | 13 1 79 | cnmpt2k | |- ( ph -> ( f e. ( ( J tX K ) Cn L ) |-> ( x e. X |-> ( y e. Y |-> ( x f y ) ) ) ) e. ( ( L ^ko ( J tX K ) ) Cn ( ( L ^ko K ) ^ko J ) ) ) |
| 81 | 3 80 | eqeltrid | |- ( ph -> F e. ( ( L ^ko ( J tX K ) ) Cn ( ( L ^ko K ) ^ko J ) ) ) |
| 82 | 1 2 3 4 5 6 | xkocnv | |- ( ph -> `' F = ( g e. ( J Cn ( L ^ko K ) ) |-> ( x e. X , y e. Y |-> ( ( g ` x ) ` y ) ) ) ) |
| 83 | 15 25 | op1std | |- ( z = <. x , y >. -> ( 1st ` z ) = x ) |
| 84 | 83 | fveq2d | |- ( z = <. x , y >. -> ( g ` ( 1st ` z ) ) = ( g ` x ) ) |
| 85 | 15 25 | op2ndd | |- ( z = <. x , y >. -> ( 2nd ` z ) = y ) |
| 86 | 84 85 | fveq12d | |- ( z = <. x , y >. -> ( ( g ` ( 1st ` z ) ) ` ( 2nd ` z ) ) = ( ( g ` x ) ` y ) ) |
| 87 | 86 | mpompt | |- ( z e. ( X X. Y ) |-> ( ( g ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) = ( x e. X , y e. Y |-> ( ( g ` x ) ` y ) ) |
| 88 | 87 | mpteq2i | |- ( g e. ( J Cn ( L ^ko K ) ) |-> ( z e. ( X X. Y ) |-> ( ( g ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) ) = ( g e. ( J Cn ( L ^ko K ) ) |-> ( x e. X , y e. Y |-> ( ( g ` x ) ` y ) ) ) |
| 89 | 82 88 | eqtr4di | |- ( ph -> `' F = ( g e. ( J Cn ( L ^ko K ) ) |-> ( z e. ( X X. Y ) |-> ( ( g ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) ) ) |
| 90 | nllytop | |- ( J e. N-Locally Comp -> J e. Top ) |
|
| 91 | 4 90 | syl | |- ( ph -> J e. Top ) |
| 92 | nllytop | |- ( K e. N-Locally Comp -> K e. Top ) |
|
| 93 | 5 92 | syl | |- ( ph -> K e. Top ) |
| 94 | xkotop | |- ( ( K e. Top /\ L e. Top ) -> ( L ^ko K ) e. Top ) |
|
| 95 | 93 6 94 | syl2anc | |- ( ph -> ( L ^ko K ) e. Top ) |
| 96 | eqid | |- ( ( L ^ko K ) ^ko J ) = ( ( L ^ko K ) ^ko J ) |
|
| 97 | 96 | xkotopon | |- ( ( J e. Top /\ ( L ^ko K ) e. Top ) -> ( ( L ^ko K ) ^ko J ) e. ( TopOn ` ( J Cn ( L ^ko K ) ) ) ) |
| 98 | 91 95 97 | syl2anc | |- ( ph -> ( ( L ^ko K ) ^ko J ) e. ( TopOn ` ( J Cn ( L ^ko K ) ) ) ) |
| 99 | vex | |- g e. _V |
|
| 100 | 99 24 | op1std | |- ( w = <. g , z >. -> ( 1st ` w ) = g ) |
| 101 | 99 24 | op2ndd | |- ( w = <. g , z >. -> ( 2nd ` w ) = z ) |
| 102 | 101 | fveq2d | |- ( w = <. g , z >. -> ( 1st ` ( 2nd ` w ) ) = ( 1st ` z ) ) |
| 103 | 100 102 | fveq12d | |- ( w = <. g , z >. -> ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) = ( g ` ( 1st ` z ) ) ) |
| 104 | 101 | fveq2d | |- ( w = <. g , z >. -> ( 2nd ` ( 2nd ` w ) ) = ( 2nd ` z ) ) |
| 105 | 103 104 | fveq12d | |- ( w = <. g , z >. -> ( ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ` ( 2nd ` ( 2nd ` w ) ) ) = ( ( g ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) |
| 106 | 105 | mpompt | |- ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ` ( 2nd ` ( 2nd ` w ) ) ) ) = ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> ( ( g ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) |
| 107 | txtopon | |- ( ( ( ( L ^ko K ) ^ko J ) e. ( TopOn ` ( J Cn ( L ^ko K ) ) ) /\ ( J tX K ) e. ( TopOn ` ( X X. Y ) ) ) -> ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) e. ( TopOn ` ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) ) |
|
| 108 | 98 8 107 | syl2anc | |- ( ph -> ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) e. ( TopOn ` ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) ) |
| 109 | 2 | adantr | |- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> K e. ( TopOn ` Y ) ) |
| 110 | 35 | adantr | |- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> L e. ( TopOn ` U. L ) ) |
| 111 | eqid | |- ( L ^ko K ) = ( L ^ko K ) |
|
| 112 | 111 | xkotopon | |- ( ( K e. Top /\ L e. Top ) -> ( L ^ko K ) e. ( TopOn ` ( K Cn L ) ) ) |
| 113 | 93 6 112 | syl2anc | |- ( ph -> ( L ^ko K ) e. ( TopOn ` ( K Cn L ) ) ) |
| 114 | xp1st | |- ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) -> ( 1st ` w ) e. ( J Cn ( L ^ko K ) ) ) |
|
| 115 | cnf2 | |- ( ( J e. ( TopOn ` X ) /\ ( L ^ko K ) e. ( TopOn ` ( K Cn L ) ) /\ ( 1st ` w ) e. ( J Cn ( L ^ko K ) ) ) -> ( 1st ` w ) : X --> ( K Cn L ) ) |
|
| 116 | 1 113 114 115 | syl2an3an | |- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> ( 1st ` w ) : X --> ( K Cn L ) ) |
| 117 | xp2nd | |- ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) -> ( 2nd ` w ) e. ( X X. Y ) ) |
|
| 118 | 117 | adantl | |- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> ( 2nd ` w ) e. ( X X. Y ) ) |
| 119 | xp1st | |- ( ( 2nd ` w ) e. ( X X. Y ) -> ( 1st ` ( 2nd ` w ) ) e. X ) |
|
| 120 | 118 119 | syl | |- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> ( 1st ` ( 2nd ` w ) ) e. X ) |
| 121 | 116 120 | ffvelcdmd | |- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) e. ( K Cn L ) ) |
| 122 | cnf2 | |- ( ( K e. ( TopOn ` Y ) /\ L e. ( TopOn ` U. L ) /\ ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) e. ( K Cn L ) ) -> ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) : Y --> U. L ) |
|
| 123 | 109 110 121 122 | syl3anc | |- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) : Y --> U. L ) |
| 124 | 123 | feqmptd | |- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) = ( y e. Y |-> ( ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ` y ) ) ) |
| 125 | 124 | mpteq2dva | |- ( ph -> ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ) = ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( y e. Y |-> ( ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ` y ) ) ) ) |
| 126 | 100 | mpompt | |- ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( 1st ` w ) ) = ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> g ) |
| 127 | 116 | feqmptd | |- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> ( 1st ` w ) = ( x e. X |-> ( ( 1st ` w ) ` x ) ) ) |
| 128 | 127 | mpteq2dva | |- ( ph -> ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( 1st ` w ) ) = ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( x e. X |-> ( ( 1st ` w ) ` x ) ) ) ) |
| 129 | 126 128 | eqtr3id | |- ( ph -> ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> g ) = ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( x e. X |-> ( ( 1st ` w ) ` x ) ) ) ) |
| 130 | 98 8 | cnmpt1st | |- ( ph -> ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> g ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn ( ( L ^ko K ) ^ko J ) ) ) |
| 131 | 129 130 | eqeltrrd | |- ( ph -> ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( x e. X |-> ( ( 1st ` w ) ` x ) ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn ( ( L ^ko K ) ^ko J ) ) ) |
| 132 | 102 | mpompt | |- ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( 1st ` ( 2nd ` w ) ) ) = ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> ( 1st ` z ) ) |
| 133 | 98 8 | cnmpt2nd | |- ( ph -> ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> z ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn ( J tX K ) ) ) |
| 134 | 52 | cbvmptv | |- ( t e. ( X X. Y ) |-> ( 1st ` t ) ) = ( z e. ( X X. Y ) |-> ( 1st ` z ) ) |
| 135 | 83 | mpompt | |- ( z e. ( X X. Y ) |-> ( 1st ` z ) ) = ( x e. X , y e. Y |-> x ) |
| 136 | 1 2 | cnmpt1st | |- ( ph -> ( x e. X , y e. Y |-> x ) e. ( ( J tX K ) Cn J ) ) |
| 137 | 135 136 | eqeltrid | |- ( ph -> ( z e. ( X X. Y ) |-> ( 1st ` z ) ) e. ( ( J tX K ) Cn J ) ) |
| 138 | 134 137 | eqeltrid | |- ( ph -> ( t e. ( X X. Y ) |-> ( 1st ` t ) ) e. ( ( J tX K ) Cn J ) ) |
| 139 | 98 8 133 8 138 52 | cnmpt21 | |- ( ph -> ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> ( 1st ` z ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn J ) ) |
| 140 | 132 139 | eqeltrid | |- ( ph -> ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( 1st ` ( 2nd ` w ) ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn J ) ) |
| 141 | fveq2 | |- ( x = ( 1st ` ( 2nd ` w ) ) -> ( ( 1st ` w ) ` x ) = ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ) |
|
| 142 | 108 1 113 4 131 140 141 | cnmptk1p | |- ( ph -> ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn ( L ^ko K ) ) ) |
| 143 | 125 142 | eqeltrrd | |- ( ph -> ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( y e. Y |-> ( ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ` y ) ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn ( L ^ko K ) ) ) |
| 144 | 104 | mpompt | |- ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( 2nd ` ( 2nd ` w ) ) ) = ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> ( 2nd ` z ) ) |
| 145 | 61 | cbvmptv | |- ( t e. ( X X. Y ) |-> ( 2nd ` t ) ) = ( z e. ( X X. Y ) |-> ( 2nd ` z ) ) |
| 146 | 85 | mpompt | |- ( z e. ( X X. Y ) |-> ( 2nd ` z ) ) = ( x e. X , y e. Y |-> y ) |
| 147 | 1 2 | cnmpt2nd | |- ( ph -> ( x e. X , y e. Y |-> y ) e. ( ( J tX K ) Cn K ) ) |
| 148 | 146 147 | eqeltrid | |- ( ph -> ( z e. ( X X. Y ) |-> ( 2nd ` z ) ) e. ( ( J tX K ) Cn K ) ) |
| 149 | 145 148 | eqeltrid | |- ( ph -> ( t e. ( X X. Y ) |-> ( 2nd ` t ) ) e. ( ( J tX K ) Cn K ) ) |
| 150 | 98 8 133 8 149 61 | cnmpt21 | |- ( ph -> ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> ( 2nd ` z ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn K ) ) |
| 151 | 144 150 | eqeltrid | |- ( ph -> ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( 2nd ` ( 2nd ` w ) ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn K ) ) |
| 152 | fveq2 | |- ( y = ( 2nd ` ( 2nd ` w ) ) -> ( ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ` y ) = ( ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ` ( 2nd ` ( 2nd ` w ) ) ) ) |
|
| 153 | 108 2 35 5 143 151 152 | cnmptk1p | |- ( ph -> ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ` ( 2nd ` ( 2nd ` w ) ) ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn L ) ) |
| 154 | 106 153 | eqeltrrid | |- ( ph -> ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> ( ( g ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn L ) ) |
| 155 | 98 8 154 | cnmpt2k | |- ( ph -> ( g e. ( J Cn ( L ^ko K ) ) |-> ( z e. ( X X. Y ) |-> ( ( g ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) ) e. ( ( ( L ^ko K ) ^ko J ) Cn ( L ^ko ( J tX K ) ) ) ) |
| 156 | 89 155 | eqeltrd | |- ( ph -> `' F e. ( ( ( L ^ko K ) ^ko J ) Cn ( L ^ko ( J tX K ) ) ) ) |
| 157 | ishmeo | |- ( F e. ( ( L ^ko ( J tX K ) ) Homeo ( ( L ^ko K ) ^ko J ) ) <-> ( F e. ( ( L ^ko ( J tX K ) ) Cn ( ( L ^ko K ) ^ko J ) ) /\ `' F e. ( ( ( L ^ko K ) ^ko J ) Cn ( L ^ko ( J tX K ) ) ) ) ) |
|
| 158 | 81 156 157 | sylanbrc | |- ( ph -> F e. ( ( L ^ko ( J tX K ) ) Homeo ( ( L ^ko K ) ^ko J ) ) ) |