This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a quotient map is injective, then it is a homeomorphism. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qtopf1.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| qtopf1.2 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1→ 𝑌 ) | ||
| Assertion | qtopf1 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Homeo ( 𝐽 qTop 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopf1.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | qtopf1.2 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1→ 𝑌 ) | |
| 3 | f1fn | ⊢ ( 𝐹 : 𝑋 –1-1→ 𝑌 → 𝐹 Fn 𝑋 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 5 | qtopid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) | |
| 6 | 1 4 5 | syl2anc | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) |
| 7 | f1f1orn | ⊢ ( 𝐹 : 𝑋 –1-1→ 𝑌 → 𝐹 : 𝑋 –1-1-onto→ ran 𝐹 ) | |
| 8 | f1ocnv | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ ran 𝐹 → ◡ 𝐹 : ran 𝐹 –1-1-onto→ 𝑋 ) | |
| 9 | f1of | ⊢ ( ◡ 𝐹 : ran 𝐹 –1-1-onto→ 𝑋 → ◡ 𝐹 : ran 𝐹 ⟶ 𝑋 ) | |
| 10 | 2 7 8 9 | 4syl | ⊢ ( 𝜑 → ◡ 𝐹 : ran 𝐹 ⟶ 𝑋 ) |
| 11 | imacnvcnv | ⊢ ( ◡ ◡ 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑥 ) | |
| 12 | imassrn | ⊢ ( 𝐹 “ 𝑥 ) ⊆ ran 𝐹 | |
| 13 | 12 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ 𝑥 ) ⊆ ran 𝐹 ) |
| 14 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
| 15 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ⊆ 𝑋 ) | |
| 16 | 1 15 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ⊆ 𝑋 ) |
| 17 | f1imacnv | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝑥 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) = 𝑥 ) | |
| 18 | 14 16 17 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) = 𝑥 ) |
| 19 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ 𝐽 ) | |
| 20 | 18 19 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ∈ 𝐽 ) |
| 21 | dffn4 | ⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 : 𝑋 –onto→ ran 𝐹 ) | |
| 22 | 4 21 | sylib | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
| 23 | elqtop3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ ran 𝐹 ) → ( ( 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹 “ 𝑥 ) ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ∈ 𝐽 ) ) ) | |
| 24 | 1 22 23 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹 “ 𝑥 ) ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ∈ 𝐽 ) ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹 “ 𝑥 ) ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ∈ 𝐽 ) ) ) |
| 26 | 13 20 25 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ) |
| 27 | 11 26 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ◡ ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ) |
| 28 | 27 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐽 ( ◡ ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ) |
| 29 | qtoptopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ ran 𝐹 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ) | |
| 30 | 1 22 29 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 31 | iscn | ⊢ ( ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( ◡ 𝐹 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐽 ) ↔ ( ◡ 𝐹 : ran 𝐹 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( ◡ ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ) ) ) | |
| 32 | 30 1 31 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐹 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐽 ) ↔ ( ◡ 𝐹 : ran 𝐹 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( ◡ ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ) ) ) |
| 33 | 10 28 32 | mpbir2and | ⊢ ( 𝜑 → ◡ 𝐹 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐽 ) ) |
| 34 | ishmeo | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ∧ ◡ 𝐹 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐽 ) ) ) | |
| 35 | 6 33 34 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Homeo ( 𝐽 qTop 𝐹 ) ) ) |