This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the property A is preserved under topological products, then so is the property of being n-locally A . (Contributed by Mario Carneiro, 13-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | txlly.1 | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑗 ×t 𝑘 ) ∈ 𝐴 ) | |
| Assertion | txnlly | ⊢ ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) → ( 𝑅 ×t 𝑆 ) ∈ 𝑛-Locally 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txlly.1 | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑗 ×t 𝑘 ) ∈ 𝐴 ) | |
| 2 | nllytop | ⊢ ( 𝑅 ∈ 𝑛-Locally 𝐴 → 𝑅 ∈ Top ) | |
| 3 | nllytop | ⊢ ( 𝑆 ∈ 𝑛-Locally 𝐴 → 𝑆 ∈ Top ) | |
| 4 | txtop | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) | |
| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 6 | eltx | ⊢ ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) → ( 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) | |
| 7 | simpll | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑅 ∈ 𝑛-Locally 𝐴 ) | |
| 8 | simprll | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑢 ∈ 𝑅 ) | |
| 9 | simprrl | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑦 ∈ ( 𝑢 × 𝑣 ) ) | |
| 10 | xp1st | ⊢ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) → ( 1st ‘ 𝑦 ) ∈ 𝑢 ) | |
| 11 | 9 10 | syl | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ( 1st ‘ 𝑦 ) ∈ 𝑢 ) |
| 12 | nlly2i | ⊢ ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑢 ∈ 𝑅 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑢 ) → ∃ 𝑎 ∈ 𝒫 𝑢 ∃ 𝑟 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ) | |
| 13 | 7 8 11 12 | syl3anc | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ∃ 𝑎 ∈ 𝒫 𝑢 ∃ 𝑟 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ) |
| 14 | simplr | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑆 ∈ 𝑛-Locally 𝐴 ) | |
| 15 | simprlr | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑣 ∈ 𝑆 ) | |
| 16 | xp2nd | ⊢ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) → ( 2nd ‘ 𝑦 ) ∈ 𝑣 ) | |
| 17 | 9 16 | syl | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ( 2nd ‘ 𝑦 ) ∈ 𝑣 ) |
| 18 | nlly2i | ⊢ ( ( 𝑆 ∈ 𝑛-Locally 𝐴 ∧ 𝑣 ∈ 𝑆 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ) → ∃ 𝑏 ∈ 𝒫 𝑣 ∃ 𝑠 ∈ 𝑆 ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) | |
| 19 | 14 15 17 18 | syl3anc | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ∃ 𝑏 ∈ 𝒫 𝑣 ∃ 𝑠 ∈ 𝑆 ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) |
| 20 | reeanv | ⊢ ( ∃ 𝑎 ∈ 𝒫 𝑢 ∃ 𝑏 ∈ 𝒫 𝑣 ( ∃ 𝑟 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ∃ 𝑠 ∈ 𝑆 ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ↔ ( ∃ 𝑎 ∈ 𝒫 𝑢 ∃ 𝑟 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ∃ 𝑏 ∈ 𝒫 𝑣 ∃ 𝑠 ∈ 𝑆 ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) | |
| 21 | reeanv | ⊢ ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ↔ ( ∃ 𝑟 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ∃ 𝑠 ∈ 𝑆 ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) | |
| 22 | 5 | ad3antrrr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 23 | 2 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑅 ∈ Top ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑅 ∈ Top ) |
| 25 | 14 3 | syl | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑆 ∈ Top ) |
| 26 | 25 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑆 ∈ Top ) |
| 27 | simprrl | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → 𝑟 ∈ 𝑅 ) | |
| 28 | 27 | adantr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑟 ∈ 𝑅 ) |
| 29 | simprrr | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → 𝑠 ∈ 𝑆 ) | |
| 30 | 29 | adantr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑠 ∈ 𝑆 ) |
| 31 | txopn | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑟 × 𝑠 ) ∈ ( 𝑅 ×t 𝑆 ) ) | |
| 32 | 24 26 28 30 31 | syl22anc | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑟 × 𝑠 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 33 | 9 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑦 ∈ ( 𝑢 × 𝑣 ) ) |
| 34 | 1st2nd2 | ⊢ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) | |
| 35 | 33 34 | syl | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 36 | simprl1 | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 1st ‘ 𝑦 ) ∈ 𝑟 ) | |
| 37 | simprr1 | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 2nd ‘ 𝑦 ) ∈ 𝑠 ) | |
| 38 | 36 37 | opelxpd | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ∈ ( 𝑟 × 𝑠 ) ) |
| 39 | 35 38 | eqeltrd | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑦 ∈ ( 𝑟 × 𝑠 ) ) |
| 40 | opnneip | ⊢ ( ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ( 𝑟 × 𝑠 ) ∈ ( 𝑅 ×t 𝑆 ) ∧ 𝑦 ∈ ( 𝑟 × 𝑠 ) ) → ( 𝑟 × 𝑠 ) ∈ ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ) | |
| 41 | 22 32 39 40 | syl3anc | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑟 × 𝑠 ) ∈ ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ) |
| 42 | simprl2 | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑟 ⊆ 𝑎 ) | |
| 43 | simprr2 | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑠 ⊆ 𝑏 ) | |
| 44 | xpss12 | ⊢ ( ( 𝑟 ⊆ 𝑎 ∧ 𝑠 ⊆ 𝑏 ) → ( 𝑟 × 𝑠 ) ⊆ ( 𝑎 × 𝑏 ) ) | |
| 45 | 42 43 44 | syl2anc | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑟 × 𝑠 ) ⊆ ( 𝑎 × 𝑏 ) ) |
| 46 | simprll | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → 𝑎 ∈ 𝒫 𝑢 ) | |
| 47 | 46 | adantr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑎 ∈ 𝒫 𝑢 ) |
| 48 | 47 | elpwid | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑎 ⊆ 𝑢 ) |
| 49 | 8 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑢 ∈ 𝑅 ) |
| 50 | elssuni | ⊢ ( 𝑢 ∈ 𝑅 → 𝑢 ⊆ ∪ 𝑅 ) | |
| 51 | 49 50 | syl | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑢 ⊆ ∪ 𝑅 ) |
| 52 | 48 51 | sstrd | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑎 ⊆ ∪ 𝑅 ) |
| 53 | simprlr | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → 𝑏 ∈ 𝒫 𝑣 ) | |
| 54 | 53 | adantr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑏 ∈ 𝒫 𝑣 ) |
| 55 | 54 | elpwid | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑏 ⊆ 𝑣 ) |
| 56 | 15 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ 𝑆 ) |
| 57 | elssuni | ⊢ ( 𝑣 ∈ 𝑆 → 𝑣 ⊆ ∪ 𝑆 ) | |
| 58 | 56 57 | syl | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑣 ⊆ ∪ 𝑆 ) |
| 59 | 55 58 | sstrd | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → 𝑏 ⊆ ∪ 𝑆 ) |
| 60 | xpss12 | ⊢ ( ( 𝑎 ⊆ ∪ 𝑅 ∧ 𝑏 ⊆ ∪ 𝑆 ) → ( 𝑎 × 𝑏 ) ⊆ ( ∪ 𝑅 × ∪ 𝑆 ) ) | |
| 61 | 52 59 60 | syl2anc | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑎 × 𝑏 ) ⊆ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 62 | eqid | ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 63 | eqid | ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 64 | 62 63 | txuni | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 65 | 24 26 64 | syl2anc | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 66 | 61 65 | sseqtrd | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑎 × 𝑏 ) ⊆ ∪ ( 𝑅 ×t 𝑆 ) ) |
| 67 | eqid | ⊢ ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) | |
| 68 | 67 | ssnei2 | ⊢ ( ( ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ( 𝑟 × 𝑠 ) ∈ ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ) ∧ ( ( 𝑟 × 𝑠 ) ⊆ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ∪ ( 𝑅 ×t 𝑆 ) ) ) → ( 𝑎 × 𝑏 ) ∈ ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ) |
| 69 | 22 41 45 66 68 | syl22anc | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑎 × 𝑏 ) ∈ ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ) |
| 70 | xpss12 | ⊢ ( ( 𝑎 ⊆ 𝑢 ∧ 𝑏 ⊆ 𝑣 ) → ( 𝑎 × 𝑏 ) ⊆ ( 𝑢 × 𝑣 ) ) | |
| 71 | 48 55 70 | syl2anc | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑎 × 𝑏 ) ⊆ ( 𝑢 × 𝑣 ) ) |
| 72 | simprrr | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) | |
| 73 | 72 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) |
| 74 | 71 73 | sstrd | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑎 × 𝑏 ) ⊆ 𝑥 ) |
| 75 | vex | ⊢ 𝑥 ∈ V | |
| 76 | 75 | elpw2 | ⊢ ( ( 𝑎 × 𝑏 ) ∈ 𝒫 𝑥 ↔ ( 𝑎 × 𝑏 ) ⊆ 𝑥 ) |
| 77 | 74 76 | sylibr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑎 × 𝑏 ) ∈ 𝒫 𝑥 ) |
| 78 | 69 77 | elind | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑎 × 𝑏 ) ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ) |
| 79 | txrest | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑎 × 𝑏 ) ) = ( ( 𝑅 ↾t 𝑎 ) ×t ( 𝑆 ↾t 𝑏 ) ) ) | |
| 80 | 24 26 47 54 79 | syl22anc | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑎 × 𝑏 ) ) = ( ( 𝑅 ↾t 𝑎 ) ×t ( 𝑆 ↾t 𝑏 ) ) ) |
| 81 | simprl3 | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) | |
| 82 | simprr3 | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) | |
| 83 | 1 | caovcl | ⊢ ( ( ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) → ( ( 𝑅 ↾t 𝑎 ) ×t ( 𝑆 ↾t 𝑏 ) ) ∈ 𝐴 ) |
| 84 | 81 82 83 | syl2anc | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( ( 𝑅 ↾t 𝑎 ) ×t ( 𝑆 ↾t 𝑏 ) ) ∈ 𝐴 ) |
| 85 | 80 84 | eqeltrd | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑎 × 𝑏 ) ) ∈ 𝐴 ) |
| 86 | oveq2 | ⊢ ( 𝑧 = ( 𝑎 × 𝑏 ) → ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) = ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑎 × 𝑏 ) ) ) | |
| 87 | 86 | eleq1d | ⊢ ( 𝑧 = ( 𝑎 × 𝑏 ) → ( ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ↔ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑎 × 𝑏 ) ) ∈ 𝐴 ) ) |
| 88 | 87 | rspcev | ⊢ ( ( ( 𝑎 × 𝑏 ) ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑎 × 𝑏 ) ) ∈ 𝐴 ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) |
| 89 | 78 85 88 | syl2anc | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) ∧ ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) |
| 90 | 89 | ex | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 91 | 90 | anassrs | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 92 | 91 | rexlimdvva | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ) → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 93 | 21 92 | biimtrrid | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑎 ∈ 𝒫 𝑢 ∧ 𝑏 ∈ 𝒫 𝑣 ) ) → ( ( ∃ 𝑟 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ∃ 𝑠 ∈ 𝑆 ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 94 | 93 | rexlimdvva | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ( ∃ 𝑎 ∈ 𝒫 𝑢 ∃ 𝑏 ∈ 𝒫 𝑣 ( ∃ 𝑟 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ∃ 𝑠 ∈ 𝑆 ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 95 | 20 94 | biimtrrid | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ( ( ∃ 𝑎 ∈ 𝒫 𝑢 ∃ 𝑟 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ 𝑟 ⊆ 𝑎 ∧ ( 𝑅 ↾t 𝑎 ) ∈ 𝐴 ) ∧ ∃ 𝑏 ∈ 𝒫 𝑣 ∃ 𝑠 ∈ 𝑆 ( ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑏 ∧ ( 𝑆 ↾t 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 96 | 13 19 95 | mp2and | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) |
| 97 | 96 | expr | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) ∧ ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ) → ( ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 98 | 97 | rexlimdvva | ⊢ ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) → ( ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) → ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 99 | 98 | ralimdv | ⊢ ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 100 | 6 99 | sylbid | ⊢ ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) → ( 𝑥 ∈ ( 𝑅 ×t 𝑆 ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 101 | 100 | ralrimiv | ⊢ ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) → ∀ 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) |
| 102 | isnlly | ⊢ ( ( 𝑅 ×t 𝑆 ) ∈ 𝑛-Locally 𝐴 ↔ ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ∀ 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( ( ( nei ‘ ( 𝑅 ×t 𝑆 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) | |
| 103 | 5 101 102 | sylanbrc | ⊢ ( ( 𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴 ) → ( 𝑅 ×t 𝑆 ) ∈ 𝑛-Locally 𝐴 ) |