This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The evaluation of a curried function by a one-arg function is jointly continuous. (Contributed by Mario Carneiro, 23-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptk1p.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmptk1p.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmptk1p.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | ||
| cnmptk1p.n | ⊢ ( 𝜑 → 𝐾 ∈ 𝑛-Locally Comp ) | ||
| cnmptk1p.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) | ||
| cnmptk1p.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| cnmptk1p.c | ⊢ ( 𝑦 = 𝐵 → 𝐴 = 𝐶 ) | ||
| Assertion | cnmptk1p | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptk1p.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmptk1p.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | cnmptk1p.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | |
| 4 | cnmptk1p.n | ⊢ ( 𝜑 → 𝐾 ∈ 𝑛-Locally Comp ) | |
| 5 | cnmptk1p.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) | |
| 6 | cnmptk1p.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 7 | cnmptk1p.c | ⊢ ( 𝑦 = 𝐵 → 𝐴 = 𝐶 ) | |
| 8 | eqid | ⊢ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 9 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑌 ) | |
| 10 | 1 2 6 9 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑌 ) |
| 11 | 10 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑌 ) |
| 12 | 7 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∈ 𝑍 ↔ 𝐶 ∈ 𝑍 ) ) |
| 13 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 14 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) |
| 15 | nllytop | ⊢ ( 𝐾 ∈ 𝑛-Locally Comp → 𝐾 ∈ Top ) | |
| 16 | 4 15 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 17 | topontop | ⊢ ( 𝐿 ∈ ( TopOn ‘ 𝑍 ) → 𝐿 ∈ Top ) | |
| 18 | 3 17 | syl | ⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 19 | eqid | ⊢ ( 𝐿 ↑ko 𝐾 ) = ( 𝐿 ↑ko 𝐾 ) | |
| 20 | 19 | xkotopon | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐿 ∈ Top ) → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
| 21 | 16 18 20 | syl2anc | ⊢ ( 𝜑 → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
| 22 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) | |
| 23 | 1 21 5 22 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) |
| 24 | 23 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) |
| 25 | cnf2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ 𝑍 ) | |
| 26 | 13 14 24 25 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ 𝑍 ) |
| 27 | 8 | fmpt | ⊢ ( ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ↔ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ 𝑍 ) |
| 28 | 26 27 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ) |
| 29 | 12 28 11 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ 𝑍 ) |
| 30 | 8 7 11 29 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝐵 ) = 𝐶 ) |
| 31 | 30 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) |
| 32 | eqid | ⊢ ( 𝐾 Cn 𝐿 ) = ( 𝐾 Cn 𝐿 ) | |
| 33 | toponuni | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) | |
| 34 | 2 33 | syl | ⊢ ( 𝜑 → 𝑌 = ∪ 𝐾 ) |
| 35 | mpoeq12 | ⊢ ( ( ( 𝐾 Cn 𝐿 ) = ( 𝐾 Cn 𝐿 ) ∧ 𝑌 = ∪ 𝐾 ) → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑧 ) ) = ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) ) | |
| 36 | 32 34 35 | sylancr | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑧 ) ) = ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) ) |
| 37 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 38 | eqid | ⊢ ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) = ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) | |
| 39 | 37 38 | xkofvcn | ⊢ ( ( 𝐾 ∈ 𝑛-Locally Comp ∧ 𝐿 ∈ Top ) → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ×t 𝐾 ) Cn 𝐿 ) ) |
| 40 | 4 18 39 | syl2anc | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ×t 𝐾 ) Cn 𝐿 ) ) |
| 41 | 36 40 | eqeltrd | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑧 ) ) ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ×t 𝐾 ) Cn 𝐿 ) ) |
| 42 | fveq1 | ⊢ ( 𝑓 = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) → ( 𝑓 ‘ 𝑧 ) = ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) ) | |
| 43 | fveq2 | ⊢ ( 𝑧 = 𝐵 → ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) = ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝐵 ) ) | |
| 44 | 42 43 | sylan9eq | ⊢ ( ( 𝑓 = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∧ 𝑧 = 𝐵 ) → ( 𝑓 ‘ 𝑧 ) = ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝐵 ) ) |
| 45 | 1 5 6 21 2 41 44 | cnmpt12 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝐵 ) ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| 46 | 31 45 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ∈ ( 𝐽 Cn 𝐿 ) ) |