This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction <. H , Q >. of a walk <. F , P >. to an initial segment of the walk (of length N ) forms a walk on the subgraph S consisting of the edges in the initial segment. Formerly proven directly for Eulerian paths, see eupthres . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 3-May-2015) (Revised by AV, 5-Mar-2021) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| wlkres.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| wlkres.d | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | ||
| wlkres.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | ||
| wlkres.s | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | ||
| wlkres.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | ||
| wlkres.h | ⊢ 𝐻 = ( 𝐹 prefix 𝑁 ) | ||
| wlkres.q | ⊢ 𝑄 = ( 𝑃 ↾ ( 0 ... 𝑁 ) ) | ||
| Assertion | wlkres | ⊢ ( 𝜑 → 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | wlkres.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | wlkres.d | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 4 | wlkres.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 5 | wlkres.s | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | |
| 6 | wlkres.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | |
| 7 | wlkres.h | ⊢ 𝐻 = ( 𝐹 prefix 𝑁 ) | |
| 8 | wlkres.q | ⊢ 𝑄 = ( 𝑃 ↾ ( 0 ... 𝑁 ) ) | |
| 9 | 2 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 10 | pfxwrdsymb | ⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 𝐹 prefix 𝑁 ) ∈ Word ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) | |
| 11 | 3 9 10 | 3syl | ⊢ ( 𝜑 → ( 𝐹 prefix 𝑁 ) ∈ Word ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
| 12 | 7 | a1i | ⊢ ( 𝜑 → 𝐻 = ( 𝐹 prefix 𝑁 ) ) |
| 13 | 6 | dmeqd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑆 ) = dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
| 14 | 3 9 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
| 15 | wrdf | ⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) | |
| 16 | fimass | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ⊆ dom 𝐼 ) | |
| 17 | 14 15 16 | 3syl | ⊢ ( 𝜑 → ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ⊆ dom 𝐼 ) |
| 18 | ssdmres | ⊢ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ⊆ dom 𝐼 ↔ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) | |
| 19 | 17 18 | sylib | ⊢ ( 𝜑 → dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
| 20 | 13 19 | eqtrd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑆 ) = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
| 21 | wrdeq | ⊢ ( dom ( iEdg ‘ 𝑆 ) = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) → Word dom ( iEdg ‘ 𝑆 ) = Word ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) | |
| 22 | 20 21 | syl | ⊢ ( 𝜑 → Word dom ( iEdg ‘ 𝑆 ) = Word ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
| 23 | 11 12 22 | 3eltr4d | ⊢ ( 𝜑 → 𝐻 ∈ Word dom ( iEdg ‘ 𝑆 ) ) |
| 24 | 1 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 25 | 3 24 | syl | ⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 26 | 5 | feq3d | ⊢ ( 𝜑 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝑆 ) ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
| 27 | 25 26 | mpbird | ⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝑆 ) ) |
| 28 | fzossfz | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) | |
| 29 | 28 4 | sselid | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 30 | elfzuz3 | ⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 31 | fzss2 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 0 ... 𝑁 ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 32 | 29 30 31 | 3syl | ⊢ ( 𝜑 → ( 0 ... 𝑁 ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 33 | 27 32 | fssresd | ⊢ ( 𝜑 → ( 𝑃 ↾ ( 0 ... 𝑁 ) ) : ( 0 ... 𝑁 ) ⟶ ( Vtx ‘ 𝑆 ) ) |
| 34 | 7 | fveq2i | ⊢ ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) |
| 35 | pfxlen | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) = 𝑁 ) | |
| 36 | 14 29 35 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) = 𝑁 ) |
| 37 | 34 36 | eqtrid | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = 𝑁 ) |
| 38 | 37 | oveq2d | ⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝐻 ) ) = ( 0 ... 𝑁 ) ) |
| 39 | 38 | feq2d | ⊢ ( 𝜑 → ( ( 𝑃 ↾ ( 0 ... 𝑁 ) ) : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ↔ ( 𝑃 ↾ ( 0 ... 𝑁 ) ) : ( 0 ... 𝑁 ) ⟶ ( Vtx ‘ 𝑆 ) ) ) |
| 40 | 33 39 | mpbird | ⊢ ( 𝜑 → ( 𝑃 ↾ ( 0 ... 𝑁 ) ) : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ) |
| 41 | 8 | feq1i | ⊢ ( 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ↔ ( 𝑃 ↾ ( 0 ... 𝑁 ) ) : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ) |
| 42 | 40 41 | sylibr | ⊢ ( 𝜑 → 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ) |
| 43 | 1 2 | wlkprop | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 44 | 3 43 | syl | ⊢ ( 𝜑 → ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 45 | 44 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 46 | 37 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) = ( 0 ..^ 𝑁 ) ) |
| 47 | 46 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ↔ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 48 | 8 | fveq1i | ⊢ ( 𝑄 ‘ 𝑥 ) = ( ( 𝑃 ↾ ( 0 ... 𝑁 ) ) ‘ 𝑥 ) |
| 49 | fzossfz | ⊢ ( 0 ..^ 𝑁 ) ⊆ ( 0 ... 𝑁 ) | |
| 50 | 49 | a1i | ⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ ( 0 ... 𝑁 ) ) |
| 51 | 50 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → 𝑥 ∈ ( 0 ... 𝑁 ) ) |
| 52 | 51 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑃 ↾ ( 0 ... 𝑁 ) ) ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ) |
| 53 | 48 52 | eqtr2id | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ) |
| 54 | 8 | fveq1i | ⊢ ( 𝑄 ‘ ( 𝑥 + 1 ) ) = ( ( 𝑃 ↾ ( 0 ... 𝑁 ) ) ‘ ( 𝑥 + 1 ) ) |
| 55 | fzofzp1 | ⊢ ( 𝑥 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 + 1 ) ∈ ( 0 ... 𝑁 ) ) | |
| 56 | 55 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑥 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 57 | 56 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑃 ↾ ( 0 ... 𝑁 ) ) ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) ) |
| 58 | 54 57 | eqtr2id | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) |
| 59 | 53 58 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) |
| 60 | 59 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 61 | 47 60 | sylbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 62 | 61 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) |
| 63 | 14 | ancli | ⊢ ( 𝜑 → ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) ) |
| 64 | 15 | ffund | ⊢ ( 𝐹 ∈ Word dom 𝐼 → Fun 𝐹 ) |
| 65 | 64 | adantl | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) → Fun 𝐹 ) |
| 66 | 65 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → Fun 𝐹 ) |
| 67 | fdm | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 68 | elfzouz2 | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 69 | fzoss2 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 70 | 4 68 69 | 3syl | ⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 71 | sseq2 | ⊢ ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 0 ..^ 𝑁 ) ⊆ dom 𝐹 ↔ ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 72 | 70 71 | imbitrrid | ⊢ ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ dom 𝐹 ) ) |
| 73 | 15 67 72 | 3syl | ⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ dom 𝐹 ) ) |
| 74 | 73 | impcom | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) → ( 0 ..^ 𝑁 ) ⊆ dom 𝐹 ) |
| 75 | 74 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 0 ..^ 𝑁 ) ⊆ dom 𝐹 ) |
| 76 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → 𝑥 ∈ ( 0 ..^ 𝑁 ) ) | |
| 77 | 66 75 76 | resfvresima | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 78 | 63 77 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 79 | 78 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) ) |
| 80 | 79 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) ) ) |
| 81 | 47 80 | sylbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) ) ) |
| 82 | 81 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) ) |
| 83 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
| 84 | 7 | fveq1i | ⊢ ( 𝐻 ‘ 𝑥 ) = ( ( 𝐹 prefix 𝑁 ) ‘ 𝑥 ) |
| 85 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → 𝐹 ∈ Word dom 𝐼 ) |
| 86 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 87 | pfxres | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝑁 ) = ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) | |
| 88 | 85 86 87 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( 𝐹 prefix 𝑁 ) = ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) |
| 89 | 88 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ( 𝐹 prefix 𝑁 ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) |
| 90 | 84 89 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( 𝐻 ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) |
| 91 | 83 90 | fveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) ) |
| 92 | 82 91 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
| 93 | 62 92 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 94 | 4 68 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 95 | 37 | fveq2d | ⊢ ( 𝜑 → ( ℤ≥ ‘ ( ♯ ‘ 𝐻 ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
| 96 | 94 95 | eleqtrrd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐻 ) ) ) |
| 97 | fzoss2 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐻 ) ) → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 98 | 96 97 | syl | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 99 | 98 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 100 | wkslem1 | ⊢ ( 𝑘 = 𝑥 → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } , { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | |
| 101 | 100 | rspcv | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → if- ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } , { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 102 | 99 101 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → if- ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } , { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 103 | eqeq12 | ⊢ ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) ↔ ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) | |
| 104 | 103 | adantr | ⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) ↔ ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) |
| 105 | simpr | ⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) | |
| 106 | sneq | ⊢ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) → { ( 𝑃 ‘ 𝑥 ) } = { ( 𝑄 ‘ 𝑥 ) } ) | |
| 107 | 106 | adantr | ⊢ ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) → { ( 𝑃 ‘ 𝑥 ) } = { ( 𝑄 ‘ 𝑥 ) } ) |
| 108 | 107 | adantr | ⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → { ( 𝑃 ‘ 𝑥 ) } = { ( 𝑄 ‘ 𝑥 ) } ) |
| 109 | 105 108 | eqeq12d | ⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } ↔ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } ) ) |
| 110 | preq12 | ⊢ ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ) | |
| 111 | 110 | adantr | ⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ) |
| 112 | 111 105 | sseq12d | ⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ↔ { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 113 | 104 109 112 | ifpbi123d | ⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } , { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ↔ if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
| 114 | 113 | biimpd | ⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } , { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
| 115 | 93 102 114 | sylsyld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
| 116 | 115 | com12 | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
| 117 | 116 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
| 118 | 45 117 | mpcom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 119 | 118 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 120 | 1 2 3 4 5 | wlkreslem | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 121 | eqid | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) | |
| 122 | eqid | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) | |
| 123 | 121 122 | iswlkg | ⊢ ( 𝑆 ∈ V → ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ↔ ( 𝐻 ∈ Word dom ( iEdg ‘ 𝑆 ) ∧ 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) ) |
| 124 | 120 123 | syl | ⊢ ( 𝜑 → ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ↔ ( 𝐻 ∈ Word dom ( iEdg ‘ 𝑆 ) ∧ 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) ) |
| 125 | 23 42 119 124 | mpbir3and | ⊢ ( 𝜑 → 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ) |