This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the function value of a restriction for a function restricted to the image of the restricting subset. (Contributed by AV, 6-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resfvresima.f | ⊢ ( 𝜑 → Fun 𝐹 ) | |
| resfvresima.s | ⊢ ( 𝜑 → 𝑆 ⊆ dom 𝐹 ) | ||
| resfvresima.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | ||
| Assertion | resfvresima | ⊢ ( 𝜑 → ( ( 𝐻 ↾ ( 𝐹 “ 𝑆 ) ) ‘ ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑋 ) ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resfvresima.f | ⊢ ( 𝜑 → Fun 𝐹 ) | |
| 2 | resfvresima.s | ⊢ ( 𝜑 → 𝑆 ⊆ dom 𝐹 ) | |
| 3 | resfvresima.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | |
| 4 | 3 | fvresd | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 5 | 4 | fveq2d | ⊢ ( 𝜑 → ( ( 𝐻 ↾ ( 𝐹 “ 𝑆 ) ) ‘ ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑋 ) ) = ( ( 𝐻 ↾ ( 𝐹 “ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 6 | 1 2 | jca | ⊢ ( 𝜑 → ( Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹 ) ) |
| 7 | funfvima2 | ⊢ ( ( Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹 ) → ( 𝑋 ∈ 𝑆 → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝑆 ) ) ) | |
| 8 | 6 3 7 | sylc | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝑆 ) ) |
| 9 | 8 | fvresd | ⊢ ( 𝜑 → ( ( 𝐻 ↾ ( 𝐹 “ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 10 | 5 9 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐻 ↾ ( 𝐹 “ 𝑆 ) ) ‘ ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑋 ) ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |