This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction <. H , Q >. of a walk <. F , P >. to an initial segment of the walk (of length N ) forms a walk on the subgraph S consisting of the edges in the initial segment. Formerly proven directly for Eulerian paths, see eupthres . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 3-May-2015) (Revised by AV, 5-Mar-2021) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkres.v | |- V = ( Vtx ` G ) |
|
| wlkres.i | |- I = ( iEdg ` G ) |
||
| wlkres.d | |- ( ph -> F ( Walks ` G ) P ) |
||
| wlkres.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
||
| wlkres.s | |- ( ph -> ( Vtx ` S ) = V ) |
||
| wlkres.e | |- ( ph -> ( iEdg ` S ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
||
| wlkres.h | |- H = ( F prefix N ) |
||
| wlkres.q | |- Q = ( P |` ( 0 ... N ) ) |
||
| Assertion | wlkres | |- ( ph -> H ( Walks ` S ) Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkres.v | |- V = ( Vtx ` G ) |
|
| 2 | wlkres.i | |- I = ( iEdg ` G ) |
|
| 3 | wlkres.d | |- ( ph -> F ( Walks ` G ) P ) |
|
| 4 | wlkres.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
|
| 5 | wlkres.s | |- ( ph -> ( Vtx ` S ) = V ) |
|
| 6 | wlkres.e | |- ( ph -> ( iEdg ` S ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
|
| 7 | wlkres.h | |- H = ( F prefix N ) |
|
| 8 | wlkres.q | |- Q = ( P |` ( 0 ... N ) ) |
|
| 9 | 2 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 10 | pfxwrdsymb | |- ( F e. Word dom I -> ( F prefix N ) e. Word ( F " ( 0 ..^ N ) ) ) |
|
| 11 | 3 9 10 | 3syl | |- ( ph -> ( F prefix N ) e. Word ( F " ( 0 ..^ N ) ) ) |
| 12 | 7 | a1i | |- ( ph -> H = ( F prefix N ) ) |
| 13 | 6 | dmeqd | |- ( ph -> dom ( iEdg ` S ) = dom ( I |` ( F " ( 0 ..^ N ) ) ) ) |
| 14 | 3 9 | syl | |- ( ph -> F e. Word dom I ) |
| 15 | wrdf | |- ( F e. Word dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
|
| 16 | fimass | |- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> ( F " ( 0 ..^ N ) ) C_ dom I ) |
|
| 17 | 14 15 16 | 3syl | |- ( ph -> ( F " ( 0 ..^ N ) ) C_ dom I ) |
| 18 | ssdmres | |- ( ( F " ( 0 ..^ N ) ) C_ dom I <-> dom ( I |` ( F " ( 0 ..^ N ) ) ) = ( F " ( 0 ..^ N ) ) ) |
|
| 19 | 17 18 | sylib | |- ( ph -> dom ( I |` ( F " ( 0 ..^ N ) ) ) = ( F " ( 0 ..^ N ) ) ) |
| 20 | 13 19 | eqtrd | |- ( ph -> dom ( iEdg ` S ) = ( F " ( 0 ..^ N ) ) ) |
| 21 | wrdeq | |- ( dom ( iEdg ` S ) = ( F " ( 0 ..^ N ) ) -> Word dom ( iEdg ` S ) = Word ( F " ( 0 ..^ N ) ) ) |
|
| 22 | 20 21 | syl | |- ( ph -> Word dom ( iEdg ` S ) = Word ( F " ( 0 ..^ N ) ) ) |
| 23 | 11 12 22 | 3eltr4d | |- ( ph -> H e. Word dom ( iEdg ` S ) ) |
| 24 | 1 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 25 | 3 24 | syl | |- ( ph -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 26 | 5 | feq3d | |- ( ph -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` S ) <-> P : ( 0 ... ( # ` F ) ) --> V ) ) |
| 27 | 25 26 | mpbird | |- ( ph -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` S ) ) |
| 28 | fzossfz | |- ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
|
| 29 | 28 4 | sselid | |- ( ph -> N e. ( 0 ... ( # ` F ) ) ) |
| 30 | elfzuz3 | |- ( N e. ( 0 ... ( # ` F ) ) -> ( # ` F ) e. ( ZZ>= ` N ) ) |
|
| 31 | fzss2 | |- ( ( # ` F ) e. ( ZZ>= ` N ) -> ( 0 ... N ) C_ ( 0 ... ( # ` F ) ) ) |
|
| 32 | 29 30 31 | 3syl | |- ( ph -> ( 0 ... N ) C_ ( 0 ... ( # ` F ) ) ) |
| 33 | 27 32 | fssresd | |- ( ph -> ( P |` ( 0 ... N ) ) : ( 0 ... N ) --> ( Vtx ` S ) ) |
| 34 | 7 | fveq2i | |- ( # ` H ) = ( # ` ( F prefix N ) ) |
| 35 | pfxlen | |- ( ( F e. Word dom I /\ N e. ( 0 ... ( # ` F ) ) ) -> ( # ` ( F prefix N ) ) = N ) |
|
| 36 | 14 29 35 | syl2anc | |- ( ph -> ( # ` ( F prefix N ) ) = N ) |
| 37 | 34 36 | eqtrid | |- ( ph -> ( # ` H ) = N ) |
| 38 | 37 | oveq2d | |- ( ph -> ( 0 ... ( # ` H ) ) = ( 0 ... N ) ) |
| 39 | 38 | feq2d | |- ( ph -> ( ( P |` ( 0 ... N ) ) : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) <-> ( P |` ( 0 ... N ) ) : ( 0 ... N ) --> ( Vtx ` S ) ) ) |
| 40 | 33 39 | mpbird | |- ( ph -> ( P |` ( 0 ... N ) ) : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) ) |
| 41 | 8 | feq1i | |- ( Q : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) <-> ( P |` ( 0 ... N ) ) : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) ) |
| 42 | 40 41 | sylibr | |- ( ph -> Q : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) ) |
| 43 | 1 2 | wlkprop | |- ( F ( Walks ` G ) P -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
| 44 | 3 43 | syl | |- ( ph -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
| 45 | 44 | adantr | |- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
| 46 | 37 | oveq2d | |- ( ph -> ( 0 ..^ ( # ` H ) ) = ( 0 ..^ N ) ) |
| 47 | 46 | eleq2d | |- ( ph -> ( x e. ( 0 ..^ ( # ` H ) ) <-> x e. ( 0 ..^ N ) ) ) |
| 48 | 8 | fveq1i | |- ( Q ` x ) = ( ( P |` ( 0 ... N ) ) ` x ) |
| 49 | fzossfz | |- ( 0 ..^ N ) C_ ( 0 ... N ) |
|
| 50 | 49 | a1i | |- ( ph -> ( 0 ..^ N ) C_ ( 0 ... N ) ) |
| 51 | 50 | sselda | |- ( ( ph /\ x e. ( 0 ..^ N ) ) -> x e. ( 0 ... N ) ) |
| 52 | 51 | fvresd | |- ( ( ph /\ x e. ( 0 ..^ N ) ) -> ( ( P |` ( 0 ... N ) ) ` x ) = ( P ` x ) ) |
| 53 | 48 52 | eqtr2id | |- ( ( ph /\ x e. ( 0 ..^ N ) ) -> ( P ` x ) = ( Q ` x ) ) |
| 54 | 8 | fveq1i | |- ( Q ` ( x + 1 ) ) = ( ( P |` ( 0 ... N ) ) ` ( x + 1 ) ) |
| 55 | fzofzp1 | |- ( x e. ( 0 ..^ N ) -> ( x + 1 ) e. ( 0 ... N ) ) |
|
| 56 | 55 | adantl | |- ( ( ph /\ x e. ( 0 ..^ N ) ) -> ( x + 1 ) e. ( 0 ... N ) ) |
| 57 | 56 | fvresd | |- ( ( ph /\ x e. ( 0 ..^ N ) ) -> ( ( P |` ( 0 ... N ) ) ` ( x + 1 ) ) = ( P ` ( x + 1 ) ) ) |
| 58 | 54 57 | eqtr2id | |- ( ( ph /\ x e. ( 0 ..^ N ) ) -> ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) |
| 59 | 53 58 | jca | |- ( ( ph /\ x e. ( 0 ..^ N ) ) -> ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) ) |
| 60 | 59 | ex | |- ( ph -> ( x e. ( 0 ..^ N ) -> ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) ) ) |
| 61 | 47 60 | sylbid | |- ( ph -> ( x e. ( 0 ..^ ( # ` H ) ) -> ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) ) ) |
| 62 | 61 | imp | |- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) ) |
| 63 | 14 | ancli | |- ( ph -> ( ph /\ F e. Word dom I ) ) |
| 64 | 15 | ffund | |- ( F e. Word dom I -> Fun F ) |
| 65 | 64 | adantl | |- ( ( ph /\ F e. Word dom I ) -> Fun F ) |
| 66 | 65 | adantr | |- ( ( ( ph /\ F e. Word dom I ) /\ x e. ( 0 ..^ N ) ) -> Fun F ) |
| 67 | fdm | |- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> dom F = ( 0 ..^ ( # ` F ) ) ) |
|
| 68 | elfzouz2 | |- ( N e. ( 0 ..^ ( # ` F ) ) -> ( # ` F ) e. ( ZZ>= ` N ) ) |
|
| 69 | fzoss2 | |- ( ( # ` F ) e. ( ZZ>= ` N ) -> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
|
| 70 | 4 68 69 | 3syl | |- ( ph -> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 71 | sseq2 | |- ( dom F = ( 0 ..^ ( # ` F ) ) -> ( ( 0 ..^ N ) C_ dom F <-> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) ) |
|
| 72 | 70 71 | imbitrrid | |- ( dom F = ( 0 ..^ ( # ` F ) ) -> ( ph -> ( 0 ..^ N ) C_ dom F ) ) |
| 73 | 15 67 72 | 3syl | |- ( F e. Word dom I -> ( ph -> ( 0 ..^ N ) C_ dom F ) ) |
| 74 | 73 | impcom | |- ( ( ph /\ F e. Word dom I ) -> ( 0 ..^ N ) C_ dom F ) |
| 75 | 74 | adantr | |- ( ( ( ph /\ F e. Word dom I ) /\ x e. ( 0 ..^ N ) ) -> ( 0 ..^ N ) C_ dom F ) |
| 76 | simpr | |- ( ( ( ph /\ F e. Word dom I ) /\ x e. ( 0 ..^ N ) ) -> x e. ( 0 ..^ N ) ) |
|
| 77 | 66 75 76 | resfvresima | |- ( ( ( ph /\ F e. Word dom I ) /\ x e. ( 0 ..^ N ) ) -> ( ( I |` ( F " ( 0 ..^ N ) ) ) ` ( ( F |` ( 0 ..^ N ) ) ` x ) ) = ( I ` ( F ` x ) ) ) |
| 78 | 63 77 | sylan | |- ( ( ph /\ x e. ( 0 ..^ N ) ) -> ( ( I |` ( F " ( 0 ..^ N ) ) ) ` ( ( F |` ( 0 ..^ N ) ) ` x ) ) = ( I ` ( F ` x ) ) ) |
| 79 | 78 | eqcomd | |- ( ( ph /\ x e. ( 0 ..^ N ) ) -> ( I ` ( F ` x ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) ` ( ( F |` ( 0 ..^ N ) ) ` x ) ) ) |
| 80 | 79 | ex | |- ( ph -> ( x e. ( 0 ..^ N ) -> ( I ` ( F ` x ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) ` ( ( F |` ( 0 ..^ N ) ) ` x ) ) ) ) |
| 81 | 47 80 | sylbid | |- ( ph -> ( x e. ( 0 ..^ ( # ` H ) ) -> ( I ` ( F ` x ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) ` ( ( F |` ( 0 ..^ N ) ) ` x ) ) ) ) |
| 82 | 81 | imp | |- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( I ` ( F ` x ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) ` ( ( F |` ( 0 ..^ N ) ) ` x ) ) ) |
| 83 | 6 | adantr | |- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( iEdg ` S ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
| 84 | 7 | fveq1i | |- ( H ` x ) = ( ( F prefix N ) ` x ) |
| 85 | 14 | adantr | |- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> F e. Word dom I ) |
| 86 | 29 | adantr | |- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> N e. ( 0 ... ( # ` F ) ) ) |
| 87 | pfxres | |- ( ( F e. Word dom I /\ N e. ( 0 ... ( # ` F ) ) ) -> ( F prefix N ) = ( F |` ( 0 ..^ N ) ) ) |
|
| 88 | 85 86 87 | syl2anc | |- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( F prefix N ) = ( F |` ( 0 ..^ N ) ) ) |
| 89 | 88 | fveq1d | |- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( ( F prefix N ) ` x ) = ( ( F |` ( 0 ..^ N ) ) ` x ) ) |
| 90 | 84 89 | eqtrid | |- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( H ` x ) = ( ( F |` ( 0 ..^ N ) ) ` x ) ) |
| 91 | 83 90 | fveq12d | |- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( ( iEdg ` S ) ` ( H ` x ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) ` ( ( F |` ( 0 ..^ N ) ) ` x ) ) ) |
| 92 | 82 91 | eqtr4d | |- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) |
| 93 | 62 92 | jca | |- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) ) |
| 94 | 4 68 | syl | |- ( ph -> ( # ` F ) e. ( ZZ>= ` N ) ) |
| 95 | 37 | fveq2d | |- ( ph -> ( ZZ>= ` ( # ` H ) ) = ( ZZ>= ` N ) ) |
| 96 | 94 95 | eleqtrrd | |- ( ph -> ( # ` F ) e. ( ZZ>= ` ( # ` H ) ) ) |
| 97 | fzoss2 | |- ( ( # ` F ) e. ( ZZ>= ` ( # ` H ) ) -> ( 0 ..^ ( # ` H ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
|
| 98 | 96 97 | syl | |- ( ph -> ( 0 ..^ ( # ` H ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 99 | 98 | sselda | |- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> x e. ( 0 ..^ ( # ` F ) ) ) |
| 100 | wkslem1 | |- ( k = x -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( I ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( I ` ( F ` x ) ) ) ) ) |
|
| 101 | 100 | rspcv | |- ( x e. ( 0 ..^ ( # ` F ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( I ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( I ` ( F ` x ) ) ) ) ) |
| 102 | 99 101 | syl | |- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( I ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( I ` ( F ` x ) ) ) ) ) |
| 103 | eqeq12 | |- ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) -> ( ( P ` x ) = ( P ` ( x + 1 ) ) <-> ( Q ` x ) = ( Q ` ( x + 1 ) ) ) ) |
|
| 104 | 103 | adantr | |- ( ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) -> ( ( P ` x ) = ( P ` ( x + 1 ) ) <-> ( Q ` x ) = ( Q ` ( x + 1 ) ) ) ) |
| 105 | simpr | |- ( ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) -> ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) |
|
| 106 | sneq | |- ( ( P ` x ) = ( Q ` x ) -> { ( P ` x ) } = { ( Q ` x ) } ) |
|
| 107 | 106 | adantr | |- ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) -> { ( P ` x ) } = { ( Q ` x ) } ) |
| 108 | 107 | adantr | |- ( ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) -> { ( P ` x ) } = { ( Q ` x ) } ) |
| 109 | 105 108 | eqeq12d | |- ( ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) -> ( ( I ` ( F ` x ) ) = { ( P ` x ) } <-> ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } ) ) |
| 110 | preq12 | |- ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) -> { ( P ` x ) , ( P ` ( x + 1 ) ) } = { ( Q ` x ) , ( Q ` ( x + 1 ) ) } ) |
|
| 111 | 110 | adantr | |- ( ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) -> { ( P ` x ) , ( P ` ( x + 1 ) ) } = { ( Q ` x ) , ( Q ` ( x + 1 ) ) } ) |
| 112 | 111 105 | sseq12d | |- ( ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) -> ( { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( I ` ( F ` x ) ) <-> { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) |
| 113 | 104 109 112 | ifpbi123d | |- ( ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) -> ( if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( I ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( I ` ( F ` x ) ) ) <-> if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) ) |
| 114 | 113 | biimpd | |- ( ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) -> ( if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( I ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( I ` ( F ` x ) ) ) -> if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) ) |
| 115 | 93 102 114 | sylsyld | |- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) ) |
| 116 | 115 | com12 | |- ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) ) |
| 117 | 116 | 3ad2ant3 | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) ) |
| 118 | 45 117 | mpcom | |- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) |
| 119 | 118 | ralrimiva | |- ( ph -> A. x e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) |
| 120 | 1 2 3 4 5 | wlkreslem | |- ( ph -> S e. _V ) |
| 121 | eqid | |- ( Vtx ` S ) = ( Vtx ` S ) |
|
| 122 | eqid | |- ( iEdg ` S ) = ( iEdg ` S ) |
|
| 123 | 121 122 | iswlkg | |- ( S e. _V -> ( H ( Walks ` S ) Q <-> ( H e. Word dom ( iEdg ` S ) /\ Q : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) /\ A. x e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) ) ) |
| 124 | 120 123 | syl | |- ( ph -> ( H ( Walks ` S ) Q <-> ( H e. Word dom ( iEdg ` S ) /\ Q : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) /\ A. x e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) ) ) |
| 125 | 23 42 119 124 | mpbir3and | |- ( ph -> H ( Walks ` S ) Q ) |