This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for redwlk . (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 29-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | redwlklem | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) | |
| 2 | fzossfz | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) | |
| 3 | fssres | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) | |
| 4 | 1 2 3 | sylancl | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 5 | 4 | ex | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
| 6 | lencl | ⊢ ( 𝐹 ∈ Word 𝑆 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 7 | 6 | nn0zd | ⊢ ( 𝐹 ∈ Word 𝑆 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
| 8 | fzoval | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐹 ∈ Word 𝑆 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 11 | wrdred1hash | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) | |
| 12 | oveq2 | ⊢ ( ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) | |
| 13 | 12 | eqeq2d | ⊢ ( ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ↔ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
| 14 | 11 13 | syl | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ↔ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
| 15 | 10 14 | mpbird | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ) |
| 16 | 15 | feq2d | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ↔ ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ 𝑉 ) ) |
| 17 | 5 16 | sylibd | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ 𝑉 ) ) |
| 18 | 17 | 3impia | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ 𝑉 ) |