This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkres . (Contributed by AV, 5-Mar-2021) (Revised by AV, 30-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| wlkres.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| wlkres.d | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | ||
| wlkres.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | ||
| wlkres.s | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | ||
| Assertion | wlkreslem | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | wlkres.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | wlkres.d | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 4 | wlkres.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 5 | wlkres.s | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | |
| 6 | ax-1 | ⊢ ( 𝑆 ∈ V → ( 𝜑 → 𝑆 ∈ V ) ) | |
| 7 | df-nel | ⊢ ( 𝑆 ∉ V ↔ ¬ 𝑆 ∈ V ) | |
| 8 | df-br | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ 〈 𝐹 , 𝑃 〉 ∈ ( Walks ‘ 𝐺 ) ) | |
| 9 | ne0i | ⊢ ( 〈 𝐹 , 𝑃 〉 ∈ ( Walks ‘ 𝐺 ) → ( Walks ‘ 𝐺 ) ≠ ∅ ) | |
| 10 | 5 1 | eqtrdi | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝐺 ) ) |
| 11 | 10 | anim1ci | ⊢ ( ( 𝜑 ∧ 𝑆 ∉ V ) → ( 𝑆 ∉ V ∧ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝐺 ) ) ) |
| 12 | wlk0prc | ⊢ ( ( 𝑆 ∉ V ∧ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝐺 ) ) → ( Walks ‘ 𝐺 ) = ∅ ) | |
| 13 | eqneqall | ⊢ ( ( Walks ‘ 𝐺 ) = ∅ → ( ( Walks ‘ 𝐺 ) ≠ ∅ → 𝑆 ∈ V ) ) | |
| 14 | 11 12 13 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑆 ∉ V ) → ( ( Walks ‘ 𝐺 ) ≠ ∅ → 𝑆 ∈ V ) ) |
| 15 | 14 | expcom | ⊢ ( 𝑆 ∉ V → ( 𝜑 → ( ( Walks ‘ 𝐺 ) ≠ ∅ → 𝑆 ∈ V ) ) ) |
| 16 | 15 | com13 | ⊢ ( ( Walks ‘ 𝐺 ) ≠ ∅ → ( 𝜑 → ( 𝑆 ∉ V → 𝑆 ∈ V ) ) ) |
| 17 | 9 16 | syl | ⊢ ( 〈 𝐹 , 𝑃 〉 ∈ ( Walks ‘ 𝐺 ) → ( 𝜑 → ( 𝑆 ∉ V → 𝑆 ∈ V ) ) ) |
| 18 | 8 17 | sylbi | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝜑 → ( 𝑆 ∉ V → 𝑆 ∈ V ) ) ) |
| 19 | 3 18 | mpcom | ⊢ ( 𝜑 → ( 𝑆 ∉ V → 𝑆 ∈ V ) ) |
| 20 | 19 | com12 | ⊢ ( 𝑆 ∉ V → ( 𝜑 → 𝑆 ∈ V ) ) |
| 21 | 7 20 | sylbir | ⊢ ( ¬ 𝑆 ∈ V → ( 𝜑 → 𝑆 ∈ V ) ) |
| 22 | 6 21 | pm2.61i | ⊢ ( 𝜑 → 𝑆 ∈ V ) |