This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction <. H , Q >. of an Eulerian path <. F , P >. to an initial segment of the path (of length N ) forms an Eulerian path on the subgraph S consisting of the edges in the initial segment. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 3-May-2015) (Revised by AV, 6-Mar-2021) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eupth0.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| eupth0.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| eupthres.d | ⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | ||
| eupthres.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | ||
| eupthres.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | ||
| eupthres.h | ⊢ 𝐻 = ( 𝐹 prefix 𝑁 ) | ||
| eupthres.q | ⊢ 𝑄 = ( 𝑃 ↾ ( 0 ... 𝑁 ) ) | ||
| eupthres.s | ⊢ ( Vtx ‘ 𝑆 ) = 𝑉 | ||
| Assertion | eupthres | ⊢ ( 𝜑 → 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupth0.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eupth0.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | eupthres.d | ⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | |
| 4 | eupthres.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 5 | eupthres.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | |
| 6 | eupthres.h | ⊢ 𝐻 = ( 𝐹 prefix 𝑁 ) | |
| 7 | eupthres.q | ⊢ 𝑄 = ( 𝑃 ↾ ( 0 ... 𝑁 ) ) | |
| 8 | eupthres.s | ⊢ ( Vtx ‘ 𝑆 ) = 𝑉 | |
| 9 | eupthistrl | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 10 | trliswlk | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 11 | 3 9 10 | 3syl | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 12 | 8 | a1i | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
| 13 | 1 2 11 4 12 5 6 7 | wlkres | ⊢ ( 𝜑 → 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ) |
| 14 | 3 9 | syl | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
| 15 | 1 2 14 4 6 | trlreslem | ⊢ ( 𝜑 → 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
| 16 | eqid | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) | |
| 17 | 16 | iseupthf1o | ⊢ ( 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ↔ ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ∧ 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom ( iEdg ‘ 𝑆 ) ) ) |
| 18 | 5 | dmeqd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑆 ) = dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
| 19 | 18 | f1oeq3d | ⊢ ( 𝜑 → ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom ( iEdg ‘ 𝑆 ) ↔ 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) ) |
| 20 | 19 | anbi2d | ⊢ ( 𝜑 → ( ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ∧ 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom ( iEdg ‘ 𝑆 ) ) ↔ ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ∧ 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) ) ) |
| 21 | 17 20 | bitrid | ⊢ ( 𝜑 → ( 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ↔ ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ∧ 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) ) ) |
| 22 | 13 15 21 | mpbir2and | ⊢ ( 𝜑 → 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) |