This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the prefix extractor as the restriction of a word. (Contributed by Stefan O'Rear, 24-Aug-2015) (Revised by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxres | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 prefix 𝐿 ) = ( 𝑆 ↾ ( 0 ..^ 𝐿 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pfxmpt | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 prefix 𝐿 ) = ( 𝑥 ∈ ( 0 ..^ 𝐿 ) ↦ ( 𝑆 ‘ 𝑥 ) ) ) | |
| 2 | wrdf | ⊢ ( 𝑆 ∈ Word 𝐴 → 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ 𝐴 ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ 𝐴 ) |
| 4 | elfzuz3 | ⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐿 ) ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐿 ) ) |
| 6 | fzoss2 | ⊢ ( ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐿 ) → ( 0 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 0 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
| 8 | 3 7 | feqresmpt | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ↾ ( 0 ..^ 𝐿 ) ) = ( 𝑥 ∈ ( 0 ..^ 𝐿 ) ↦ ( 𝑆 ‘ 𝑥 ) ) ) |
| 9 | 1 8 | eqtr4d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 prefix 𝐿 ) = ( 𝑆 ↾ ( 0 ..^ 𝐿 ) ) ) |