This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ulmdv . (Contributed by Mario Carneiro, 3-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulmdv.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ulmdv.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | ||
| ulmdv.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| ulmdv.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) | ||
| ulmdv.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | ||
| ulmdv.l | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ) | ||
| ulmdv.u | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ( ⇝𝑢 ‘ 𝑋 ) 𝐻 ) | ||
| ulmdvlem1.c | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ∈ 𝑋 ) | ||
| ulmdvlem1.r | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑅 ∈ ℝ+ ) | ||
| ulmdvlem1.u | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑈 ∈ ℝ+ ) | ||
| ulmdvlem1.v | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑊 ∈ ℝ+ ) | ||
| ulmdvlem1.l | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑈 < 𝑊 ) | ||
| ulmdvlem1.b | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ⊆ 𝑋 ) | ||
| ulmdvlem1.a | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( 𝑌 − 𝐶 ) ) < 𝑈 ) | ||
| ulmdvlem1.n | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑁 ∈ 𝑍 ) | ||
| ulmdvlem1.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) | ||
| ulmdvlem1.2 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) − ( 𝐻 ‘ 𝐶 ) ) ) < ( 𝑅 / 2 ) ) | ||
| ulmdvlem1.y | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑌 ∈ 𝑋 ) | ||
| ulmdvlem1.3 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑌 ≠ 𝐶 ) | ||
| ulmdvlem1.4 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( abs ‘ ( 𝑌 − 𝐶 ) ) < 𝑊 → ( abs ‘ ( ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) ) | ||
| Assertion | ulmdvlem1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( 𝐻 ‘ 𝐶 ) ) ) < 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmdv.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ulmdv.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 3 | ulmdv.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | ulmdv.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) | |
| 5 | ulmdv.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | |
| 6 | ulmdv.l | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ) | |
| 7 | ulmdv.u | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ( ⇝𝑢 ‘ 𝑋 ) 𝐻 ) | |
| 8 | ulmdvlem1.c | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ∈ 𝑋 ) | |
| 9 | ulmdvlem1.r | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑅 ∈ ℝ+ ) | |
| 10 | ulmdvlem1.u | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑈 ∈ ℝ+ ) | |
| 11 | ulmdvlem1.v | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑊 ∈ ℝ+ ) | |
| 12 | ulmdvlem1.l | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑈 < 𝑊 ) | |
| 13 | ulmdvlem1.b | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ⊆ 𝑋 ) | |
| 14 | ulmdvlem1.a | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( 𝑌 − 𝐶 ) ) < 𝑈 ) | |
| 15 | ulmdvlem1.n | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑁 ∈ 𝑍 ) | |
| 16 | ulmdvlem1.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) | |
| 17 | ulmdvlem1.2 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) − ( 𝐻 ‘ 𝐶 ) ) ) < ( 𝑅 / 2 ) ) | |
| 18 | ulmdvlem1.y | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑌 ∈ 𝑋 ) | |
| 19 | ulmdvlem1.3 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑌 ≠ 𝐶 ) | |
| 20 | ulmdvlem1.4 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( abs ‘ ( 𝑌 − 𝐶 ) ) < 𝑊 → ( abs ‘ ( ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) ) | |
| 21 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐺 : 𝑋 ⟶ ℂ ) |
| 22 | 21 18 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐺 ‘ 𝑌 ) ∈ ℂ ) |
| 23 | 21 8 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐺 ‘ 𝐶 ) ∈ ℂ ) |
| 24 | 22 23 | subcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) ∈ ℂ ) |
| 25 | fveq2 | ⊢ ( 𝑘 = 𝑁 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑁 ) ) | |
| 26 | 25 | oveq2d | ⊢ ( 𝑘 = 𝑁 → ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) = ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ) |
| 27 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) | |
| 28 | ovex | ⊢ ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ∈ V | |
| 29 | 26 27 28 | fvmpt | ⊢ ( 𝑁 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑁 ) = ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ) |
| 30 | 15 29 | syl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑁 ) = ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ) |
| 31 | ovex | ⊢ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ∈ V | |
| 32 | 31 | rgenw | ⊢ ∀ 𝑘 ∈ 𝑍 ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ∈ V |
| 33 | 27 | fnmpt | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ∈ V → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) Fn 𝑍 ) |
| 34 | 32 33 | mp1i | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) Fn 𝑍 ) |
| 35 | ulmf2 | ⊢ ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) Fn 𝑍 ∧ ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ( ⇝𝑢 ‘ 𝑋 ) 𝐻 ) → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) | |
| 36 | 34 7 35 | syl2anc | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) |
| 38 | 37 15 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑁 ) ∈ ( ℂ ↑m 𝑋 ) ) |
| 39 | 30 38 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ∈ ( ℂ ↑m 𝑋 ) ) |
| 40 | elmapi | ⊢ ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ∈ ( ℂ ↑m 𝑋 ) → ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) : 𝑋 ⟶ ℂ ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) : 𝑋 ⟶ ℂ ) |
| 42 | 41 | fdmd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → dom ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) = 𝑋 ) |
| 43 | dvbsss | ⊢ dom ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ⊆ 𝑆 | |
| 44 | 42 43 | eqsstrrdi | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑋 ⊆ 𝑆 ) |
| 45 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 46 | 2 45 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 47 | 46 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑆 ⊆ ℂ ) |
| 48 | 44 47 | sstrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑋 ⊆ ℂ ) |
| 49 | 48 18 | sseldd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑌 ∈ ℂ ) |
| 50 | 48 8 | sseldd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ∈ ℂ ) |
| 51 | 49 50 | subcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑌 − 𝐶 ) ∈ ℂ ) |
| 52 | 49 50 19 | subne0d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑌 − 𝐶 ) ≠ 0 ) |
| 53 | 24 51 52 | divcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ∈ ℂ ) |
| 54 | ulmcl | ⊢ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ( ⇝𝑢 ‘ 𝑋 ) 𝐻 → 𝐻 : 𝑋 ⟶ ℂ ) | |
| 55 | 7 54 | syl | ⊢ ( 𝜑 → 𝐻 : 𝑋 ⟶ ℂ ) |
| 56 | 55 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐻 : 𝑋 ⟶ ℂ ) |
| 57 | 56 8 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐻 ‘ 𝐶 ) ∈ ℂ ) |
| 58 | 41 8 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ∈ ℂ ) |
| 59 | 9 | rpred | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑅 ∈ ℝ ) |
| 60 | 53 58 | subcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ∈ ℂ ) |
| 61 | 60 | abscld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ∈ ℝ ) |
| 62 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) |
| 63 | 62 15 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐹 ‘ 𝑁 ) ∈ ( ℂ ↑m 𝑋 ) ) |
| 64 | elmapi | ⊢ ( ( 𝐹 ‘ 𝑁 ) ∈ ( ℂ ↑m 𝑋 ) → ( 𝐹 ‘ 𝑁 ) : 𝑋 ⟶ ℂ ) | |
| 65 | 63 64 | syl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐹 ‘ 𝑁 ) : 𝑋 ⟶ ℂ ) |
| 66 | 65 18 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ∈ ℂ ) |
| 67 | 65 8 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ∈ ℂ ) |
| 68 | 66 67 | subcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ∈ ℂ ) |
| 69 | 68 51 52 | divcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ∈ ℂ ) |
| 70 | 53 69 | subcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ∈ ℂ ) |
| 71 | 70 | abscld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) ∈ ℝ ) |
| 72 | 69 58 | subcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ∈ ℂ ) |
| 73 | 72 | abscld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ∈ ℝ ) |
| 74 | 71 73 | readdcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) + ( abs ‘ ( ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ) ∈ ℝ ) |
| 75 | 59 | rehalfcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑅 / 2 ) ∈ ℝ ) |
| 76 | 53 58 69 | abs3difd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ≤ ( ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) + ( abs ‘ ( ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ) ) |
| 77 | 75 | rehalfcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑅 / 2 ) / 2 ) ∈ ℝ ) |
| 78 | 22 66 23 67 | sub4d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) = ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) − ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
| 79 | 78 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) / ( 𝑌 − 𝐶 ) ) = ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) − ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) / ( 𝑌 − 𝐶 ) ) ) |
| 80 | 24 68 51 52 | divsubdird | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) − ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) / ( 𝑌 − 𝐶 ) ) = ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) |
| 81 | 79 80 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) / ( 𝑌 − 𝐶 ) ) = ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) |
| 82 | 81 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) / ( 𝑌 − 𝐶 ) ) ) = ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) ) |
| 83 | 22 66 | subcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ∈ ℂ ) |
| 84 | 23 67 | subcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ∈ ℂ ) |
| 85 | 83 84 | subcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ∈ ℂ ) |
| 86 | 85 51 52 | absdivd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) / ( 𝑌 − 𝐶 ) ) ) = ( ( abs ‘ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) / ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 87 | 82 86 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) = ( ( abs ‘ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) / ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 88 | eqid | ⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) | |
| 89 | 15 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 90 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 91 | 89 90 | syl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑁 ∈ ℤ ) |
| 92 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∈ ℤ ) |
| 93 | fveq2 | ⊢ ( 𝑧 = 𝑌 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) | |
| 94 | 93 | mpteq2dv | ⊢ ( 𝑧 = 𝑌 → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) ) |
| 95 | fveq2 | ⊢ ( 𝑧 = 𝑌 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑌 ) ) | |
| 96 | 94 95 | breq12d | ⊢ ( 𝑧 = 𝑌 → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ↔ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) ⇝ ( 𝐺 ‘ 𝑌 ) ) ) |
| 97 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑋 ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ) |
| 98 | 97 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑧 ∈ 𝑋 ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ) |
| 99 | 96 98 18 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) ⇝ ( 𝐺 ‘ 𝑌 ) ) |
| 100 | 1 | fvexi | ⊢ 𝑍 ∈ V |
| 101 | 100 | mptex | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ∈ V |
| 102 | 101 | a1i | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ∈ V ) |
| 103 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 104 | 103 | fveq1d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) ) |
| 105 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) | |
| 106 | fvex | ⊢ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) ∈ V | |
| 107 | 104 105 106 | fvmpt | ⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) ) |
| 108 | 107 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) ) |
| 109 | 62 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑋 ) ) |
| 110 | elmapi | ⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑋 ) → ( 𝐹 ‘ 𝑛 ) : 𝑋 ⟶ ℂ ) | |
| 111 | 109 110 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : 𝑋 ⟶ ℂ ) |
| 112 | 18 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑌 ∈ 𝑋 ) |
| 113 | 111 112 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) ∈ ℂ ) |
| 114 | 108 113 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 115 | 104 | oveq1d | ⊢ ( 𝑘 = 𝑛 → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
| 116 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) | |
| 117 | ovex | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ∈ V | |
| 118 | 115 116 117 | fvmpt | ⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ‘ 𝑛 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
| 119 | 118 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ‘ 𝑛 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
| 120 | 108 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
| 121 | 119 120 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ‘ 𝑛 ) = ( ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
| 122 | 1 92 99 66 102 114 121 | climsubc1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ⇝ ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
| 123 | 100 | mptex | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ∈ V |
| 124 | 123 | a1i | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ∈ V ) |
| 125 | fveq2 | ⊢ ( 𝑧 = 𝐶 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) | |
| 126 | 125 | mpteq2dv | ⊢ ( 𝑧 = 𝐶 → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) ) |
| 127 | fveq2 | ⊢ ( 𝑧 = 𝐶 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) | |
| 128 | 126 127 | breq12d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ↔ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) ⇝ ( 𝐺 ‘ 𝐶 ) ) ) |
| 129 | 128 98 8 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) ⇝ ( 𝐺 ‘ 𝐶 ) ) |
| 130 | 100 | mptex | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ∈ V |
| 131 | 130 | a1i | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ∈ V ) |
| 132 | 103 | fveq1d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) ) |
| 133 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) | |
| 134 | fvex | ⊢ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) ∈ V | |
| 135 | 132 133 134 | fvmpt | ⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) ) |
| 136 | 135 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) ) |
| 137 | 8 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → 𝐶 ∈ 𝑋 ) |
| 138 | 111 137 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) ∈ ℂ ) |
| 139 | 136 138 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 140 | 132 | oveq1d | ⊢ ( 𝑘 = 𝑛 → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 141 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) | |
| 142 | ovex | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ∈ V | |
| 143 | 140 141 142 | fvmpt | ⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ‘ 𝑛 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 144 | 143 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ‘ 𝑛 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 145 | 136 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 146 | 144 145 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ‘ 𝑛 ) = ( ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 147 | 1 92 129 67 131 139 146 | climsubc1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ⇝ ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 148 | 66 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ∈ ℂ ) |
| 149 | 113 148 | subcld | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ∈ ℂ ) |
| 150 | 119 149 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 151 | 67 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ∈ ℂ ) |
| 152 | 138 151 | subcld | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ∈ ℂ ) |
| 153 | 144 152 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 154 | 115 140 | oveq12d | ⊢ ( 𝑘 = 𝑛 → ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
| 155 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) | |
| 156 | ovex | ⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ∈ V | |
| 157 | 154 155 156 | fvmpt | ⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ‘ 𝑛 ) = ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
| 158 | 157 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ‘ 𝑛 ) = ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
| 159 | 119 144 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ‘ 𝑛 ) − ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ‘ 𝑛 ) ) = ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
| 160 | 158 159 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ‘ 𝑛 ) = ( ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ‘ 𝑛 ) − ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ‘ 𝑛 ) ) ) |
| 161 | 1 92 122 124 147 150 153 160 | climsub | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ⇝ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
| 162 | 100 | mptex | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ∈ V |
| 163 | 162 | a1i | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ∈ V ) |
| 164 | 149 152 | subcld | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ∈ ℂ ) |
| 165 | 158 164 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 166 | 154 | fveq2d | ⊢ ( 𝑘 = 𝑛 → ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) = ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) |
| 167 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) = ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) | |
| 168 | fvex | ⊢ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ∈ V | |
| 169 | 166 167 168 | fvmpt | ⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ‘ 𝑛 ) = ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) |
| 170 | 169 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ‘ 𝑛 ) = ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) |
| 171 | 158 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( abs ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ‘ 𝑛 ) ) = ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) |
| 172 | 170 171 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ‘ 𝑛 ) = ( abs ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ‘ 𝑛 ) ) ) |
| 173 | 1 161 163 92 165 172 | climabs | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ⇝ ( abs ‘ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) |
| 174 | 51 | abscld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( 𝑌 − 𝐶 ) ) ∈ ℝ ) |
| 175 | 77 174 | remulcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ∈ ℝ ) |
| 176 | 175 | recnd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ∈ ℂ ) |
| 177 | 1 | eqimss2i | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ 𝑍 |
| 178 | 177 100 | climconst2 | ⊢ ( ( ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ∈ ℂ ∧ 𝑀 ∈ ℤ ) → ( 𝑍 × { ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) } ) ⇝ ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 179 | 176 92 178 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑍 × { ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) } ) ⇝ ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 180 | 1 | uztrn2 | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ 𝑍 ) |
| 181 | 15 180 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ 𝑍 ) |
| 182 | 181 169 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ‘ 𝑛 ) = ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) |
| 183 | 164 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ∈ ℝ ) |
| 184 | 181 183 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ∈ ℝ ) |
| 185 | 182 184 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ‘ 𝑛 ) ∈ ℝ ) |
| 186 | ovex | ⊢ ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ∈ V | |
| 187 | 186 | fvconst2 | ⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑍 × { ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) } ) ‘ 𝑛 ) = ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 188 | 181 187 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑍 × { ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) } ) ‘ 𝑛 ) = ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 189 | 175 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ∈ ℝ ) |
| 190 | 188 189 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑍 × { ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) } ) ‘ 𝑛 ) ∈ ℝ ) |
| 191 | 181 111 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) : 𝑋 ⟶ ℂ ) |
| 192 | 191 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) Fn 𝑋 ) |
| 193 | 65 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑁 ) : 𝑋 ⟶ ℂ ) |
| 194 | 193 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑁 ) Fn 𝑋 ) |
| 195 | ulmscl | ⊢ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ( ⇝𝑢 ‘ 𝑋 ) 𝐻 → 𝑋 ∈ V ) | |
| 196 | 7 195 | syl | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 197 | 196 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑋 ∈ V ) |
| 198 | 18 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑌 ∈ 𝑋 ) |
| 199 | fnfvof | ⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) Fn 𝑋 ∧ ( 𝐹 ‘ 𝑁 ) Fn 𝑋 ) ∧ ( 𝑋 ∈ V ∧ 𝑌 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑌 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) | |
| 200 | 192 194 197 198 199 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑌 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
| 201 | 8 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐶 ∈ 𝑋 ) |
| 202 | fnfvof | ⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) Fn 𝑋 ∧ ( 𝐹 ‘ 𝑁 ) Fn 𝑋 ) ∧ ( 𝑋 ∈ V ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) | |
| 203 | 192 194 197 201 202 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 204 | 200 203 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑌 ) − ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) = ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
| 205 | 204 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑌 ) − ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) = ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) |
| 206 | 44 18 | sseldd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑌 ∈ 𝑆 ) |
| 207 | 44 8 | sseldd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ∈ 𝑆 ) |
| 208 | 206 207 | ovresd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑌 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝐶 ) = ( 𝑌 ( abs ∘ − ) 𝐶 ) ) |
| 209 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 210 | 209 | cnmetdval | ⊢ ( ( 𝑌 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝑌 ( abs ∘ − ) 𝐶 ) = ( abs ‘ ( 𝑌 − 𝐶 ) ) ) |
| 211 | 49 50 210 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑌 ( abs ∘ − ) 𝐶 ) = ( abs ‘ ( 𝑌 − 𝐶 ) ) ) |
| 212 | 208 211 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑌 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝐶 ) = ( abs ‘ ( 𝑌 − 𝐶 ) ) ) |
| 213 | 212 14 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑌 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝐶 ) < 𝑈 ) |
| 214 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 215 | xmetres2 | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( ∞Met ‘ 𝑆 ) ) | |
| 216 | 214 47 215 | sylancr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( ∞Met ‘ 𝑆 ) ) |
| 217 | 10 | rpxrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑈 ∈ ℝ* ) |
| 218 | elbl3 | ⊢ ( ( ( ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( ∞Met ‘ 𝑆 ) ∧ 𝑈 ∈ ℝ* ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ) → ( 𝑌 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ↔ ( 𝑌 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝐶 ) < 𝑈 ) ) | |
| 219 | 216 217 207 206 218 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑌 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ↔ ( 𝑌 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝐶 ) < 𝑈 ) ) |
| 220 | 213 219 | mpbird | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑌 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) |
| 221 | 220 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑌 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) |
| 222 | blcntr | ⊢ ( ( ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( ∞Met ‘ 𝑆 ) ∧ 𝐶 ∈ 𝑆 ∧ 𝑈 ∈ ℝ+ ) → 𝐶 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) | |
| 223 | 216 207 10 222 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) |
| 224 | 223 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐶 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) |
| 225 | 221 224 | jca | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑌 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ∧ 𝐶 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) ) |
| 226 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 227 | eqid | ⊢ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) = ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) | |
| 228 | 44 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑋 ⊆ 𝑆 ) |
| 229 | fvexd | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ∈ V ) | |
| 230 | fvexd | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ∈ V ) | |
| 231 | 191 | feqmptd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) |
| 232 | 193 | feqmptd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑁 ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ) ) |
| 233 | 197 229 230 231 232 | offval2 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ) ) ) |
| 234 | 191 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ∈ ℂ ) |
| 235 | 193 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ∈ ℂ ) |
| 236 | 234 235 | subcld | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ) ∈ ℂ ) |
| 237 | 233 236 | fmpt3d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) : 𝑋 ⟶ ℂ ) |
| 238 | 207 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐶 ∈ 𝑆 ) |
| 239 | 217 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑈 ∈ ℝ* ) |
| 240 | eqid | ⊢ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) = ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) | |
| 241 | 13 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ⊆ 𝑋 ) |
| 242 | 233 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) = ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ) ) ) ) |
| 243 | fvexd | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ∈ V ) | |
| 244 | 231 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) = ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) |
| 245 | 103 | oveq2d | ⊢ ( 𝑘 = 𝑛 → ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) = ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ) |
| 246 | ovex | ⊢ ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ∈ V | |
| 247 | 245 27 246 | fvmpt | ⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ) |
| 248 | 181 247 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ) |
| 249 | 36 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) |
| 250 | 249 181 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑋 ) ) |
| 251 | 248 250 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ∈ ( ℂ ↑m 𝑋 ) ) |
| 252 | elmapi | ⊢ ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ∈ ( ℂ ↑m 𝑋 ) → ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) : 𝑋 ⟶ ℂ ) | |
| 253 | 251 252 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) : 𝑋 ⟶ ℂ ) |
| 254 | 253 | feqmptd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) ) |
| 255 | 244 254 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) ) |
| 256 | fvexd | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ∈ V ) | |
| 257 | 232 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) = ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ) ) ) |
| 258 | 41 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) : 𝑋 ⟶ ℂ ) |
| 259 | 258 | feqmptd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) |
| 260 | 257 259 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) |
| 261 | 226 234 243 255 235 256 260 | dvmptsub | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ) |
| 262 | 242 261 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ) |
| 263 | 262 | dmeqd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → dom ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) = dom ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ) |
| 264 | ovex | ⊢ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ∈ V | |
| 265 | eqid | ⊢ ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) | |
| 266 | 264 265 | dmmpti | ⊢ dom ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) = 𝑋 |
| 267 | 263 266 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → dom ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) = 𝑋 ) |
| 268 | 241 267 | sseqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ⊆ dom ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 269 | 77 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑅 / 2 ) / 2 ) ∈ ℝ ) |
| 270 | 241 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) → 𝑦 ∈ 𝑋 ) |
| 271 | 262 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) ‘ 𝑦 ) = ( ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ‘ 𝑦 ) ) |
| 272 | 265 | fvmpt2 | ⊢ ( ( 𝑦 ∈ 𝑋 ∧ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ∈ V ) → ( ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ‘ 𝑦 ) = ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) |
| 273 | 264 272 | mpan2 | ⊢ ( 𝑦 ∈ 𝑋 → ( ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ‘ 𝑦 ) = ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) |
| 274 | 271 273 | sylan9eq | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) ‘ 𝑦 ) = ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) |
| 275 | 274 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) ‘ 𝑦 ) ) = ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ) |
| 276 | 264 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ∈ V ) |
| 277 | 226 236 276 261 | dvmptcl | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ∈ ℂ ) |
| 278 | 277 | abscld | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ∈ ℝ ) |
| 279 | 77 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑅 / 2 ) / 2 ) ∈ ℝ ) |
| 280 | 253 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ∈ ℂ ) |
| 281 | 258 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ∈ ℂ ) |
| 282 | 280 281 | abssubd | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) = ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) ) ) |
| 283 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 284 | 283 | oveq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝑆 D ( 𝐹 ‘ 𝑚 ) ) = ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ) |
| 285 | 284 | fveq1d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑆 D ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑥 ) = ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) |
| 286 | 285 | oveq2d | ⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑥 ) ) = ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) |
| 287 | 286 | fveq2d | ⊢ ( 𝑚 = 𝑛 → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) = ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) ) |
| 288 | 287 | breq1d | ⊢ ( 𝑚 = 𝑛 → ( ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ↔ ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) ) |
| 289 | 288 | ralbidv | ⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ↔ ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) ) |
| 290 | 289 | rspccva | ⊢ ( ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) |
| 291 | 16 290 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) |
| 292 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) = ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) | |
| 293 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) = ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) | |
| 294 | 292 293 | oveq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) = ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) ) |
| 295 | 294 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) = ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) ) ) |
| 296 | 295 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ↔ ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) ) |
| 297 | 296 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) |
| 298 | 291 297 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) |
| 299 | 282 298 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) |
| 300 | 278 279 299 | ltled | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ≤ ( ( 𝑅 / 2 ) / 2 ) ) |
| 301 | 275 300 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) ‘ 𝑦 ) ) ≤ ( ( 𝑅 / 2 ) / 2 ) ) |
| 302 | 270 301 | syldan | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) → ( abs ‘ ( ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) ‘ 𝑦 ) ) ≤ ( ( 𝑅 / 2 ) / 2 ) ) |
| 303 | 226 227 228 237 238 239 240 268 269 302 | dvlip2 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( 𝑌 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ∧ 𝐶 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) ) → ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑌 ) − ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ≤ ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 304 | 225 303 | mpdan | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑌 ) − ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ≤ ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 305 | 205 304 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ≤ ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 306 | 305 182 188 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ‘ 𝑛 ) ≤ ( ( 𝑍 × { ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) } ) ‘ 𝑛 ) ) |
| 307 | 88 91 173 179 185 190 306 | climle | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ≤ ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 308 | 85 | abscld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ∈ ℝ ) |
| 309 | 51 52 | absrpcld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( 𝑌 − 𝐶 ) ) ∈ ℝ+ ) |
| 310 | 308 77 309 | ledivmul2d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( abs ‘ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) / ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ≤ ( ( 𝑅 / 2 ) / 2 ) ↔ ( abs ‘ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ≤ ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) ) |
| 311 | 307 310 | mpbird | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( abs ‘ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) / ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ≤ ( ( 𝑅 / 2 ) / 2 ) ) |
| 312 | 87 311 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) ≤ ( ( 𝑅 / 2 ) / 2 ) ) |
| 313 | 10 | rpred | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑈 ∈ ℝ ) |
| 314 | 11 | rpred | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑊 ∈ ℝ ) |
| 315 | 174 313 314 14 12 | lttrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( 𝑌 − 𝐶 ) ) < 𝑊 ) |
| 316 | 315 20 | mpd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) |
| 317 | 71 73 77 77 312 316 | leltaddd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) + ( abs ‘ ( ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ) < ( ( ( 𝑅 / 2 ) / 2 ) + ( ( 𝑅 / 2 ) / 2 ) ) ) |
| 318 | 75 | recnd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑅 / 2 ) ∈ ℂ ) |
| 319 | 318 | 2halvesd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑅 / 2 ) / 2 ) + ( ( 𝑅 / 2 ) / 2 ) ) = ( 𝑅 / 2 ) ) |
| 320 | 317 319 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) + ( abs ‘ ( ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ) < ( 𝑅 / 2 ) ) |
| 321 | 61 74 75 76 320 | lelttrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) < ( 𝑅 / 2 ) ) |
| 322 | 53 57 58 59 321 17 | abs3lemd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( 𝐻 ‘ 𝐶 ) ) ) < 𝑅 ) |