This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma involving absolute value of differences. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| abssubd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| abs3difd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| abs3lemd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| abs3lemd.5 | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ) | ||
| abs3lemd.6 | ⊢ ( 𝜑 → ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) | ||
| Assertion | abs3lemd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | abssubd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | abs3difd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | abs3lemd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | abs3lemd.5 | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ) | |
| 6 | abs3lemd.6 | ⊢ ( 𝜑 → ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) | |
| 7 | abs3lem | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝐷 ) ) | |
| 8 | 1 2 3 4 7 | syl22anc | ⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝐷 ) ) |
| 9 | 5 6 8 | mp2and | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝐷 ) |