This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ulmdv . (Contributed by Mario Carneiro, 8-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulmdv.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ulmdv.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | ||
| ulmdv.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| ulmdv.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) | ||
| ulmdv.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | ||
| ulmdv.l | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ) | ||
| ulmdv.u | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ( ⇝𝑢 ‘ 𝑋 ) 𝐻 ) | ||
| Assertion | ulmdvlem2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → dom ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmdv.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ulmdv.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 3 | ulmdv.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | ulmdv.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) | |
| 5 | ulmdv.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | |
| 6 | ulmdv.l | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ) | |
| 7 | ulmdv.u | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ( ⇝𝑢 ‘ 𝑋 ) 𝐻 ) | |
| 8 | ovex | ⊢ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ∈ V | |
| 9 | 8 | rgenw | ⊢ ∀ 𝑘 ∈ 𝑍 ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ∈ V |
| 10 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) | |
| 11 | 10 | fnmpt | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ∈ V → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) Fn 𝑍 ) |
| 12 | 9 11 | mp1i | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) Fn 𝑍 ) |
| 13 | ulmf2 | ⊢ ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) Fn 𝑍 ∧ ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ( ⇝𝑢 ‘ 𝑋 ) 𝐻 ) → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) | |
| 14 | 12 7 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) |
| 15 | 14 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ∈ ( ℂ ↑m 𝑋 ) ) |
| 16 | elmapi | ⊢ ( ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ∈ ( ℂ ↑m 𝑋 ) → ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) : 𝑋 ⟶ ℂ ) | |
| 17 | fdm | ⊢ ( ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) : 𝑋 ⟶ ℂ → dom ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) = 𝑋 ) | |
| 18 | 15 16 17 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → dom ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) = 𝑋 ) |