This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant sequence converges to its value. (Contributed by NM, 6-Feb-2008) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climconst2.1 | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ 𝑍 | |
| climconst2.2 | ⊢ 𝑍 ∈ V | ||
| Assertion | climconst2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → ( 𝑍 × { 𝐴 } ) ⇝ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climconst2.1 | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ 𝑍 | |
| 2 | climconst2.2 | ⊢ 𝑍 ∈ V | |
| 3 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 4 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 5 | snex | ⊢ { 𝐴 } ∈ V | |
| 6 | 2 5 | xpex | ⊢ ( 𝑍 × { 𝐴 } ) ∈ V |
| 7 | 6 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → ( 𝑍 × { 𝐴 } ) ∈ V ) |
| 8 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → 𝐴 ∈ ℂ ) | |
| 9 | 1 | sseli | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ 𝑍 ) |
| 10 | fvconst2g | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑍 × { 𝐴 } ) ‘ 𝑘 ) = 𝐴 ) | |
| 11 | 8 9 10 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑍 × { 𝐴 } ) ‘ 𝑘 ) = 𝐴 ) |
| 12 | 3 4 7 8 11 | climconst | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → ( 𝑍 × { 𝐴 } ) ⇝ 𝐴 ) |