This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Simplify ulmval when F and G are known to be functions. (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulm2.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ulm2.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| ulm2.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | ||
| ulm2.b | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = 𝐵 ) | ||
| ulm2.a | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = 𝐴 ) | ||
| ulm2.g | ⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) | ||
| ulm2.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| Assertion | ulm2 | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulm2.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ulm2.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | ulm2.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 4 | ulm2.b | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = 𝐵 ) | |
| 5 | ulm2.a | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = 𝐴 ) | |
| 6 | ulm2.g | ⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) | |
| 7 | ulm2.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 8 | ulmval | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
| 10 | 3anan12 | ⊢ ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ( 𝐺 : 𝑆 ⟶ ℂ ∧ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) | |
| 11 | 3 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝑍 ) |
| 12 | fdm | ⊢ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) → dom 𝐹 = ( ℤ≥ ‘ 𝑛 ) ) | |
| 13 | 11 12 | sylan9req | ⊢ ( ( 𝜑 ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → 𝑍 = ( ℤ≥ ‘ 𝑛 ) ) |
| 14 | 1 13 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑛 ) ) |
| 15 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → 𝑀 ∈ ℤ ) |
| 16 | uz11 | ⊢ ( 𝑀 ∈ ℤ → ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑛 ) ↔ 𝑀 = 𝑛 ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝜑 ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑛 ) ↔ 𝑀 = 𝑛 ) ) |
| 18 | 14 17 | mpbid | ⊢ ( ( 𝜑 ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → 𝑀 = 𝑛 ) |
| 19 | 18 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → 𝑛 = 𝑀 ) |
| 20 | fveq2 | ⊢ ( 𝑛 = 𝑀 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑀 ) ) | |
| 21 | 20 1 | eqtr4di | ⊢ ( 𝑛 = 𝑀 → ( ℤ≥ ‘ 𝑛 ) = 𝑍 ) |
| 22 | 21 | feq2d | ⊢ ( 𝑛 = 𝑀 → ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ↔ 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) ) |
| 23 | 22 | biimparc | ⊢ ( ( 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑛 = 𝑀 ) → 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) |
| 24 | 3 23 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) |
| 25 | 19 24 | impbida | ⊢ ( 𝜑 → ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ↔ 𝑛 = 𝑀 ) ) |
| 26 | 25 | anbi1d | ⊢ ( 𝜑 → ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ( 𝑛 = 𝑀 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
| 27 | 6 | biantrurd | ⊢ ( 𝜑 → ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ( 𝐺 : 𝑆 ⟶ ℂ ∧ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) ) |
| 28 | simp-4l | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝜑 ) | |
| 29 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → 𝑛 = 𝑀 ) | |
| 30 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 31 | 2 30 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 32 | 31 1 | eleqtrrdi | ⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → 𝑀 ∈ 𝑍 ) |
| 34 | 29 33 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → 𝑛 ∈ 𝑍 ) |
| 35 | 1 | uztrn2 | ⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑗 ∈ 𝑍 ) |
| 36 | 34 35 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑗 ∈ 𝑍 ) |
| 37 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 38 | 36 37 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 39 | 38 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑘 ∈ 𝑍 ) |
| 40 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑆 ) | |
| 41 | 28 39 40 4 | syl12anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = 𝐵 ) |
| 42 | 28 5 | sylancom | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = 𝐴 ) |
| 43 | 41 42 | oveq12d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) = ( 𝐵 − 𝐴 ) ) |
| 44 | 43 | fveq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) = ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
| 45 | 44 | breq1d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
| 46 | 45 | ralbidva | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
| 47 | 46 | ralbidva | ⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
| 48 | 47 | rexbidva | ⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
| 49 | 48 | ralbidv | ⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
| 50 | 49 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑛 = 𝑀 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ( 𝑛 = 𝑀 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
| 51 | 26 27 50 | 3bitr3d | ⊢ ( 𝜑 → ( ( 𝐺 : 𝑆 ⟶ ℂ ∧ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ↔ ( 𝑛 = 𝑀 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
| 52 | 10 51 | bitrid | ⊢ ( 𝜑 → ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ( 𝑛 = 𝑀 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
| 53 | 52 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 = 𝑀 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
| 54 | 21 | rexeqdv | ⊢ ( 𝑛 = 𝑀 → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
| 55 | 54 | ralbidv | ⊢ ( 𝑛 = 𝑀 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
| 56 | 55 | ceqsrexv | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑛 ∈ ℤ ( 𝑛 = 𝑀 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
| 57 | 2 56 | syl | ⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℤ ( 𝑛 = 𝑀 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
| 58 | 9 53 57 | 3bitrd | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |