This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulm2.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ulm2.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| ulm2.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | ||
| ulm2.b | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = 𝐵 ) | ||
| ulm2.a | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = 𝐴 ) | ||
| ulmi.u | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) | ||
| ulmi.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| Assertion | ulmi | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulm2.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ulm2.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | ulm2.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 4 | ulm2.b | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = 𝐵 ) | |
| 5 | ulm2.a | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = 𝐴 ) | |
| 6 | ulmi.u | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) | |
| 7 | ulmi.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 8 | breq2 | ⊢ ( 𝑥 = 𝐶 → ( ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) ) | |
| 9 | 8 | ralbidv | ⊢ ( 𝑥 = 𝐶 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) ) |
| 10 | 9 | rexralbidv | ⊢ ( 𝑥 = 𝐶 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) ) |
| 11 | ulmcl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐺 : 𝑆 ⟶ ℂ ) | |
| 12 | 6 11 | syl | ⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) |
| 13 | ulmscl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝑆 ∈ V ) | |
| 14 | 6 13 | syl | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 15 | 1 2 3 4 5 12 14 | ulm2 | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
| 16 | 6 15 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) |
| 17 | 10 16 7 | rspcdva | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) |