This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abs3lem | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) ∧ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) ) → 𝐴 ∈ ℂ ) | |
| 2 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) ∧ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) ) → 𝐵 ∈ ℂ ) | |
| 3 | 1 2 | subcld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) ∧ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 4 | abscl | ⊢ ( ( 𝐴 − 𝐵 ) ∈ ℂ → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) | |
| 5 | 3 4 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) ∧ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 6 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) ∧ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) ) → 𝐶 ∈ ℂ ) | |
| 7 | 1 6 | subcld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) ∧ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) ) → ( 𝐴 − 𝐶 ) ∈ ℂ ) |
| 8 | abscl | ⊢ ( ( 𝐴 − 𝐶 ) ∈ ℂ → ( abs ‘ ( 𝐴 − 𝐶 ) ) ∈ ℝ ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) ∧ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) ) → ( abs ‘ ( 𝐴 − 𝐶 ) ) ∈ ℝ ) |
| 10 | 6 2 | subcld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) ∧ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) ) → ( 𝐶 − 𝐵 ) ∈ ℂ ) |
| 11 | abscl | ⊢ ( ( 𝐶 − 𝐵 ) ∈ ℂ → ( abs ‘ ( 𝐶 − 𝐵 ) ) ∈ ℝ ) | |
| 12 | 10 11 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) ∧ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) ) → ( abs ‘ ( 𝐶 − 𝐵 ) ) ∈ ℝ ) |
| 13 | 9 12 | readdcld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) ∧ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) ) → ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℝ ) |
| 14 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) ∧ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) ) → 𝐷 ∈ ℝ ) | |
| 15 | abs3dif | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) ) | |
| 16 | 1 2 6 15 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) ∧ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) ) |
| 17 | simprl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) ∧ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) ) → ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ) | |
| 18 | simprr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) ∧ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) ) → ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) | |
| 19 | 9 12 14 17 18 | lt2halvesd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) ∧ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) ) → ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) < 𝐷 ) |
| 20 | 5 13 14 16 19 | lelttrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) ∧ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝐷 ) |
| 21 | 20 | ex | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝐷 ) ) |