This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of 19.29 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rexuz3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | r19.29uz | ⊢ ( ( ∀ 𝑘 ∈ 𝑍 𝜑 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexuz3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 3 | 2 | ex | ⊢ ( 𝑗 ∈ 𝑍 → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑘 ∈ 𝑍 ) ) |
| 4 | pm3.2 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) ) | |
| 5 | 4 | a1i | ⊢ ( 𝑗 ∈ 𝑍 → ( 𝜑 → ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 6 | 3 5 | imim12d | ⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 → 𝜑 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) ) ) ) |
| 7 | 6 | ralimdv2 | ⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 𝜑 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 8 | 7 | impcom | ⊢ ( ( ∀ 𝑘 ∈ 𝑍 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) ) |
| 9 | ralim | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( ∀ 𝑘 ∈ 𝑍 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) ) |
| 11 | 10 | reximdva | ⊢ ( ∀ 𝑘 ∈ 𝑍 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) ) |
| 12 | 11 | imp | ⊢ ( ( ∀ 𝑘 ∈ 𝑍 𝜑 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) |